如圖,已知一四棱錐P-ABCD的底面是邊長為1的正方形,且側棱PC⊥底面ABCD,且PC=2,E是側棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(1);(2)見解析.
解析試題分析:(1)根據(jù)四棱錐P-ABCD的底面是邊長為1的正方形,側棱PC⊥底面ABCD,知高為PC="2." 應用體積計算公式即得;
(2)連結AC,根據(jù)ABCD是正方形,得到BD⊥AC ,由PC⊥底面ABCD 得到BD⊥PC,推出BD⊥平面PAC;由于不論點E在何位置,都有AE平面PAC,故得BD⊥AE;
試題解析:(1)該四棱錐P-ABCD的底面是邊長為1的正方形,
側棱PC⊥底面ABCD,且PC="2."
∴ 6分
(2)連結AC,∵ABCD是正方形
∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC
又∵∴BD⊥平面PAC
∵不論點E在何位置,都有AE平面PAC
∴BD⊥AE 12分
考點:垂直關系,幾何體的體積.
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱柱的三視圖,主視圖和側視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點。
(I)求證:B1C//平面AC1M;
(II)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,邊長為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,直角梯形中,,,,點為線段上異于的點,且,沿將面折起,使平面平面,如圖2.
(1)求證:平面;
(2)當三棱錐體積最大時,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖幾何體中,四邊形ABCD為矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G為FC的中點,M為線段CD上的一點,且CM =2.
(1)證明:平面BGM⊥平面BFC;
(2)求三棱錐F-BMC的體積V.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且.
(1)求證:EF∥平面BDC1;
(2)求證:平面.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com