13.某空間幾何體的三視圖中,有一個是正方形,則該空間幾何體不可能是( 。
A.圓柱B.圓錐C.棱錐D.棱柱

分析 由于圓錐的三視圖中一定不會出現(xiàn)正方形,即可得出結(jié)論.

解答 解:圓錐的三視圖中一定不會出現(xiàn)正方形,
∴該空間幾何體不可能是圓錐.
故選:B.

點評 本題通過幾何體的三視圖來考查體積的求法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點M在拋物線C:x2=2py(p>0)上,以M為圓心的圓與x軸相切于點N,過點N作直線與C相切于點P(異于點O),OP的中點為Q,則( 。
A.點Q在圓M內(nèi)B.點Q在圓M上
C.點Q在圓M外D.以上結(jié)論都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PA=PB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點.
(Ⅰ)求證:平面ADM⊥平面PBC;
(Ⅱ)當(dāng)$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$時,求點E到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°.
(Ⅰ)證明:平面PBD⊥平面PAC;
(Ⅱ)求平面APD與平面PBC所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D為BC的中點,過點D作DQ∥AP,且DQ=1,連結(jié)QB,QC,QP.
(1)證明:AQ⊥平面PBC;
(2)求二面角B-AQ-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=log2(4x+1)-x,則下面結(jié)論正確的是( 。
A.函數(shù)y=f(x+2)的對稱軸為x=-2B.函數(shù)y=f(2x)的對稱軸為x=2
C.函數(shù)y=f(x+2)的對稱中心為(2,0)D.函數(shù)y=f(2x)的對稱中心為(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB為圓O的直徑,點C為圓O上的一點,且BC=$\sqrt{3}$AC,點D為線段AB上一點,且AD=$\frac{1}{3}$DB.PD垂直于圓O所在的平面.
(Ⅰ)求證:CD⊥平面PAB;
(Ⅱ)若PD=BD,求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,正方形ABCD與正方形ABEF構(gòu)成一個$\frac{π}{3}$的二面角,將△BEF繞BE旋轉(zhuǎn)一周.在旋轉(zhuǎn)過程中,( 。
A.直線AC必與平面BEF相交
B.直線BF與直線CD恒成$\frac{π}{4}$角
C.直線BF與平面ABCD所成角的范圍是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF與平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,AC⊥BC,CD⊥AB,DE⊥BC,垂足分別為C、D、E.若AC=6,DE=4,則CD的長為2$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案