2.設(shè)a2=b4=m(a>0,b>0),且a+b=6,則m等于16.

分析 由題意把a,b用含有m的代數(shù)式表示,代入a+b=6,求解方程得答案.

解答 解:由a2=b4=m(a>0,b>0),得
$a=\sqrt{m},b=\root{4}{m}$,
∴a+b=$\sqrt{m}+\root{4}{m}$=$(\root{4}{m})^{2}+\root{4}{m}=6$,
解得:$\root{4}{m}=2$,∴m=16.
故答案為:16.

點評 本題考查有理指數(shù)冪的化簡與求值,考查方程根的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在等腰直角三角形ABC中,∠ACB=90°,在∠ACB內(nèi)部任意作一條射線CM,與線段AB交于點M,則AM<AC的概率( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線l:A(x-2)+B(y+3)+C=0交圓M:(x-2)2+(y+3)2=$\frac{4}{3}$于P,Q兩點,且A2+B2=3C2,則$\overrightarrow{MP}$•$\overrightarrow{MQ}$=( 。
A.-$\frac{1}{3}$B.-$\frac{2}{3}$C.-1D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2x+$\frac{3}{x}$在(0,$\frac{\sqrt{6}}{2}$]上為減函數(shù),[$\frac{\sqrt{6}}{2}$,+∞)上為增函數(shù).請你用單調(diào)性的定義證明:f(x)=2x+$\frac{3}{x}$在(0,$\frac{\sqrt{6}}{2}$)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x,y∈D有f(xy)=f(x)+f(y).
(1)求f(1)和f(-1)的值;
(2)判斷f(x)的奇偶性并說明理由;
(3)如果f(4)=1,f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a>0,且a≠1,用導(dǎo)數(shù)證明函數(shù)y=ax-xalna在區(qū)間(一∞,1)內(nèi)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-2ax+3.
(1)若f(1)=2,求實數(shù)a的值;
(2)當(dāng)x∈R時,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)x∈(0,2]時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個直角三角形三邊的長成等差數(shù)列,則下列說法不正確的是(  )
A.三邊邊長之比為3:4:5B.公差為1或-1
C.較小銳角的余弦為$\frac{4}{5}$D.較大銳角的正弦為$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知,$\sqrt{m}$,$\sqrt{n}$是方程x2-5x+3=0的兩根,求代數(shù)式$\frac{m\sqrt{m}-n\sqrt{n}}{\sqrt{m}-\sqrt{n}}$的值.

查看答案和解析>>

同步練習(xí)冊答案