若點(2,3t)在直線2x-y+6=0的下方,則t的取值范圍是
 
考點:二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:由點(2,3t)在直線2x-y+6=0的下方可得4-3t+6>0,解不等式可得.
解答: 解:把原點(0,0)代入直線方程的左邊可得6>0,
又可知原點(0,0)在直線方程的下方,
∴點(2,3t)在直線2x-y+6=0的下方必有4-3t+6>0,
解得t<
10
3

∴t取值范圍是為(-∞,
10
3

故答案為:(-∞,
10
3
點評:本題考查二元一次不等式和平面區(qū)域,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對入院的50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 不患心肺疾病 合計
5
10
合計 50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為
3
5

(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+c+b+d).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有5個黑球和3個白球,從中任取2個球,則其中至少有1個黑球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個邊長為3,4,5的直角三角形繞斜邊旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體,問該旋轉(zhuǎn)體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位對參加崗位培訓(xùn)的員工進(jìn)行的一次測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:

(l)參加崗位培訓(xùn)舶員工人數(shù)為
 

(2)在頻率分布直方圖中,區(qū)間[80,90)可應(yīng)的矩形的高為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,m、n表示兩條不同的直線,α、β、γ表示三個不同的平面:
①若m⊥α,n∥α,則m⊥n;  
②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,n∥α,則m∥n;  
④若α∥β,β∥γ,m⊥α,則m⊥γ;
正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時,f(x)=2x2-12x-18,若在區(qū)間(0,+∞)上關(guān)于函數(shù)y=f(x)-loga(x+1)有3個不同的零點,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(-1,1)、Q(2,2),若直線l:x+my+m=0與線段PQ的延長線相交,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、空間中的任意三點確定一個平面
B、空間中兩兩相交的三條直線確定一個平面
C、有且只有一組對邊平行的四邊形是平面圖形
D、兩組對邊分別相等的四邊形一定是平面圖形

查看答案和解析>>

同步練習(xí)冊答案