【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

【答案】解:(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算 = ×(2+3+4+5)=4,

= ×(7+8+9+12)=9,

= = =1.1,

= =9﹣1.1×4=4.6,

則回歸直線的方程為 =1.1x+4.6;

(Ⅱ)當(dāng)x=8時(shí), =1.1×8+4.6=13.4,

預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本為13.4萬元.


【解析】(Ⅰ)根據(jù)表中數(shù)據(jù)計(jì)算 、 ,求出回歸系數(shù),寫出回歸直線的方程;(Ⅱ)利用回歸方程計(jì)算x=8時(shí) 的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入﹣前n年的總支出﹣投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方法:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以16萬元出售該廠,問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植果樹,但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿足果樹生長(zhǎng)的需要,該光源照射范圍是 ,點(diǎn)E,F(xiàn)在直徑AB上,且
(1)若 ,求AE的長(zhǎng);
(2)設(shè)∠ACE=α,求該空地種植果樹的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)最小正周期后,所得圖象對(duì)應(yīng)的函數(shù)為(
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin(2x﹣
D.y=sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比為正數(shù)的等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn , 且S3+a3、S5+a5、S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)中文系共有本科生5000人,其中一、二、三、四年級(jí)的學(xué)生比為5:4:3:1,要用分層抽樣的方法從該系所有本科生中抽取一個(gè)容量為260的樣本,則應(yīng)抽二年級(jí)的學(xué)生(
A.100人
B.60人
C.80人
D.20人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(αβ)= ,且0<β<α< ,
(1)求tan2α的值;
(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,A,B的坐標(biāo)分別為(-1,2),(4,3),AC的中點(diǎn)M在y軸上,BC的中點(diǎn)N在x軸上.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案