1.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長分別為a,b,c.若a,b,c成等差數(shù)列,7sinA=3sinC,則C的值為(  )
A.30°B.60°C.120°D.150°

分析 由已知利用等差數(shù)列的性質(zhì)可得2b=a+c,又利用正弦定理可得a=$\frac{3c}{7}$,進(jìn)而可求b=$\frac{5c}{7}$,利用余弦定理即可解得cosC的值,結(jié)合范圍C∈(0°,180°),即可得解C的值.

解答 解:∵a,b,c成等差數(shù)列,
∴2b=a+c,①
∵7sinA=3sinC,
∴利用正弦定理可得:7a=3c,即,a=$\frac{3c}{7}$,由①可得b=$\frac{5c}{7}$,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{(\frac{3c}{7})^{2}+(\frac{5c}{7})^{2}-{c}^{2}}{2×\frac{3c}{7}×\frac{5c}{7}}$=-$\frac{1}{2}$,
又∵C∈(0°,180°),
∴C=120°.
故選:C.

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a$為單位向量,|$\overrightarrow b$|=2,其夾角為θ,有下列四個(gè)命題中的真命題是(  )
p1:|$\overrightarrow{a}$+$\overrightarrow$|>$\sqrt{3}$?θ∈[0,$\frac{2π}{3}$),
p2:|$\overrightarrow{a}$+$\overrightarrow$|>$\sqrt{3}$?θ∈($\frac{2π}{3}$,π]),
p3:|$\overrightarrow{a}$-$\overrightarrow$|>$\sqrt{3}$?θ∈[0,$\frac{π}{3}$)    
p4:|$\overrightarrow{a}$-$\overrightarrow$|>$\sqrt{3}$?θ∈($\frac{π}{3}$,π].
A.p1,p4B.p1,p3C.p2,p3D.p2,p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0,b>0,若不等式$\frac{1}{a}$+$\frac{2}$≥$\frac{k}{2a+b}$恒成立,則k的最大值等于( 。
A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a=1”是“對(duì)任意的正數(shù)x,$x+\frac{1}{x}≥a$恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow p=(1,2)$,$\overrightarrow q=(-1,3)$,則$\overrightarrow p$在$\overrightarrow q$方向上的射影長為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的正視圖與側(cè)視圖都是等腰梯形,則該幾何體可以是下列幾何體中的( 。
①三棱臺(tái),②四棱臺(tái),③五棱臺(tái),④圓臺(tái).
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{3^x}-1,x≤1}\\{f(x-1),x>1}\end{array}}\right.$,則f(f(2))=2,值域?yàn)椋?1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≤x-1\\ x≤3\\ x+5y≥4\end{array}\right.$,則$\frac{x}{y}$的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.(x-1)3+2014(x-1)=1,(y-1)3+2014(y-1)=-1,則x+y的值為( 。
A.2014B.0C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案