分析 由條件利用兩角和差的正弦公式求得2sin(α+β)cosα=4cos(α+β)sinα,再利用同角三角函數(shù)的基本關(guān)系證得要證的結(jié)論成立.
解答 解:∵3sinβ=sin(2α+β),α≠kπ+$\frac{π}{2}$,α+β≠kπ+$\frac{π}{2}$(k∈Z),
∴3sin[(α+β)-α]=sin[(α+β)+α],
即 3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα,
即2sin(α+β)cosα=4cos(α+β)sinα,∴tan(α+β)=2tanα成立.
點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1 | B. | y=lnx | C. | y=x2 | D. | y=log57x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com