【題目】設(shè)有兩個(gè)命題p:不等式|x|+|x-1|≥m的解集為R;q:函數(shù) 是減函數(shù).若這兩個(gè)命題中有且只有一個(gè)真命題,求實(shí)數(shù)m的范圍.
【答案】【解答】
解:若p為真命題,令y=|x|+|x-1|,則不等式|x|+|x-1|≥m的解集為R等價(jià)為m≤ ,
若q為真命題,則由指數(shù)函數(shù)的單調(diào)性得:
7-3m>1,即m<2.
由于這兩個(gè)命題中有且只有一個(gè)真命題,故p,q一真一假。
若p真q假,則 ,則
若p假q真,則 ,所以1 <m<2
綜上所述,實(shí)數(shù)m的范圍為 1<m<2
【解析】由于這兩個(gè)命題中有且只有一個(gè)真命題,故p,q一真一假,列出不等式組,求解即可。
【考點(diǎn)精析】利用全稱命題對題目進(jìn)行判斷即可得到答案,需要熟知全稱命題:,,它的否定:,;全稱命題的否定是特稱命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( )
A.f(x)=2x+1與g(x)=
B.y=x﹣1與y=
C.y= 與y=x+3
D.f(x)=1與g(x)=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)對任意x∈R,恒有(f(x)﹣sinx)(f(x)﹣cosx)=0成立,則下列關(guān)于函數(shù) y=f(x)的說法正確的是( )
A.最小正周期是2π
B.值域是[﹣1,1]
C.是奇函數(shù)或是偶函數(shù)
D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).
(1)求實(shí)數(shù)的值;
(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)
為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長是;此時(shí)四面體F﹣ADP的外接球的半徑是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn),G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com