【題目】某校為進(jìn)行愛(ài)國(guó)主義教育,在全校組織了一次有關(guān)釣魚(yú)島歷史知識(shí)的競(jìng)賽.現(xiàn)有甲、乙兩隊(duì)參加釣魚(yú)島知識(shí)競(jìng)賽,每隊(duì)3人,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得1分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用表示“甲隊(duì)總得分大于乙隊(duì)總得分” 這一事件,求.
【答案】(1),(2),
【解析】
試題由于甲隊(duì)中每人答對(duì)的概率均為,三人中答對(duì)人數(shù)可能為0人或1人或2人或3人,所以可取值為0,1,2,3;顯然服從二項(xiàng)分布,根據(jù)二項(xiàng)分布的數(shù)學(xué)期望公式得:
第二步用表示“甲隊(duì)得分”這一事件,用表示“乙隊(duì)得分”,表示“甲、乙兩個(gè)隊(duì)總得分之和等于3” ,表示“甲隊(duì)總得分大于乙隊(duì)總得分”,則事件含有和,由于事件,為互斥事件,而事件與獨(dú)立,事件與獨(dú)立,所以
求出概率值
試題解析:(Ⅰ)根據(jù)題設(shè)可知,甲隊(duì)中每人答對(duì)的概率均為,因此的分布列為,,因?yàn)?/span>,所以
(Ⅱ)用表示“甲隊(duì)得分”這一事件,用表示“乙隊(duì)得分”,由于事件,為互斥事件,
故有.由題設(shè)可知,事件與獨(dú)立,事件與獨(dú)立, 則
;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)商家為了更好地制定手機(jī)銷(xiāo)售策略,隨機(jī)對(duì)顧客進(jìn)行了一次更換手機(jī)時(shí)間間隔的調(diào)查.從更換手機(jī)的時(shí)間間隔不少于3個(gè)月且不超過(guò)24個(gè)月的顧客中選取350名作為調(diào)查對(duì)象,其中男性顧客和女性顧客的比為,商家認(rèn)為一年以內(nèi)(含一年)更換手機(jī)為頻繁更換手機(jī),否則視為未頻繁更換手機(jī).現(xiàn)按照性別采用分層抽樣的方法從中抽取105人,并按性別分為兩組,得到如下表所示的頻數(shù)分布表:
事件間隔(月) | |||||||
男性 | x | 8 | 9 | 18 | 12 | 8 | 4 |
女性 | y | 2 | 5 | 13 | 11 | 7 | 2 |
(1)計(jì)算表格中x,y的值;
(2)若以頻率作為概率,從已抽取的105且更換手機(jī)時(shí)間間隔為3至6個(gè)月(含3個(gè)月和6個(gè)月)的顧客中,隨機(jī)抽取2人,求這2人均為男性的概率;
(3)請(qǐng)根據(jù)頻率分布表填寫(xiě)列聯(lián)表,并判斷是否有以上的把握認(rèn)為“頻繁更換手機(jī)與性別有關(guān)”.
頻繁更換手機(jī) | 未頻繁更換手機(jī) | 合計(jì) | |
男性顧客 | |||
女性顧客 | |||
合計(jì) |
附表及公式:
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與直線垂直,求的極值;
(2)若函數(shù)的圖象恒在直線的下方.
①求實(shí)數(shù)的取值范圍;
②求證:對(duì)任意正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式(為自然對(duì)數(shù)的底數(shù))對(duì)成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幾何體的三視圖如圖所示,網(wǎng)格紙上的小正方形邊長(zhǎng)為1,則此幾何體的外接球的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】唐代詩(shī)人李欣的是古從軍行開(kāi)頭兩句說(shuō)“百日登山望烽火,黃昏飲馬傍交河”詩(shī)中隱含著一個(gè)有缺的數(shù)學(xué)故事“將軍飲馬”的問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)?/span>,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間生產(chǎn)甲、乙兩種產(chǎn)品,已知制造一件甲產(chǎn)品需要種元件5個(gè),種元件2個(gè),制造一件乙種產(chǎn)品需要種元件3個(gè),種元件3個(gè),現(xiàn)在只有種元件180個(gè),種元件135個(gè),每件甲產(chǎn)品可獲利潤(rùn)20元,每件乙產(chǎn)品可獲利潤(rùn)15元,試問(wèn)在這種條件下,應(yīng)如何安排生產(chǎn)計(jì)劃才能得到最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)且a≠1,函數(shù).
(1)判斷并證明f(x)和g(x)的奇偶性;
(2)求g(x)的值域;
(3)若x∈R,都有|f(x)|≥|g(x)|成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com