函數(shù)f(x)=
f(x+1)(x≤0)
log2x(x>0)
,則f(-2)=
 
考點:對數(shù)的運算性質(zhì),分段函數(shù)的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù),代入計算,即可得出結(jié)論.
解答: 解:∵f(x)=
f(x+1)(x≤0)
log2x(x>0)

∴f(-2)=f(-1)=f(0)=f(1)=log21=0
故答案為:0.
點評:本題考查分段函數(shù)的運用,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A={1,2,4,6},B={2,4,7},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1,x>0
-x2-4x
+a,x≤0
在點(1,2)處的切線與f(x)的圖象有三個公共點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x-2)=-f(x),且當x∈[-1,0]時,f(x)=2x,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx-1始終與線段y=1(-1<x<1)相交,則實數(shù)k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α+β)=
4
5
,cos(α-β)=-
4
5
且(α+β)∈(
2
,2π),(α-β)∈(
π
2
,π),則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且定義域為[a-1,2a],則實數(shù)a,b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>1,y>1,xy=10,則lgx•lgy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1<x2<x3,則函數(shù)f(x)=(x-x1)(x-x2)+(x-x2)(x-x3)+(x-x3)(x-x1)的零點有
 
個.

查看答案和解析>>

同步練習(xí)冊答案