某出租車公司為了解本公司出租車司機對新法規(guī)的知曉情況,隨機對100名出租車司機進行調(diào)查.調(diào)查問卷共10道題,答題情況如下表:
答對題目數(shù) [0,8) 8 9 10
2 13 12 8
3 37 16 9
(Ⅰ)如果出租車司機答對題目數(shù)大于等于9,就認為該司機對新法規(guī)的知曉情況比較好,試估計該公司的出租車司機對新法規(guī)知曉情況比較好的概率;
(Ⅱ)從答對題目數(shù)少于8的出租車司機中任選出兩人做進一步的調(diào)查,求選出的兩人中至少有一名女出租車司機的概率.
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:(I)求出出租車司機答對題目數(shù)大于等于9的人數(shù),代入古典概型概率計算公式,可得答案.
(II)求出從答對題目數(shù)少于8的出租車司機中任選出兩人的情況總數(shù)和選出的兩人中至少有一名女出租車司機的情況個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:(Ⅰ)答對題目數(shù)小于9道的人數(shù)為55人,
記“答對題目數(shù)大于等于9道”為事件A
P(A)=1-
55
100
=0.45

(Ⅱ)設(shè)答對題目數(shù)少于8道的司機為 A、B、C、D、E,其中A、B為女司機,
選出兩人包含:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10種情況,
至少有1名女駕駛員的事件為AB、AC、AD、AE、BC、BD、BE共7種.
記“隨機選出的兩人中至少有1名女駕駛員”為事件M,則P(M)=
7
10
=0.7
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,該程序運行后輸出的k的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x的圖象的一條對稱軸方程是( 。
A、x=
π
4
B、x=
π
8
C、x=
π
2
D、x=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在x∈[-2,3],使不等式2x-x2≥a成立,則實數(shù)a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-8]
C、[1,+∞)
D、[-8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式E:ax2+ax-2≤0,其中a∈R.
(Ⅰ)若a=1時,求不等式E的解集;
(Ⅱ)若不等式E在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考察高中生的性別與喜歡數(shù)學(xué)課程之間的關(guān)系,在某學(xué)校高中生中隨機抽取了250名學(xué)生,得到如圖的二維條形圖.
(1)根據(jù)二維條形圖,完形填空2×2列聯(lián)表:
合計
喜歡數(shù)學(xué)課程
不喜歡數(shù)學(xué)課程
合計
(2)對照如表,利用列聯(lián)表的獨立性檢驗估計,請問有多大把握認為“性別與喜歡數(shù)學(xué)有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程mx2+(m-3)x+1=0在(0,+∞)至少有一個實數(shù)根,命題q:實數(shù)m滿足em<a,且¬q是¬p的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱臺ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(Ⅰ)設(shè)平面AEC∩平面DEF=a,求證DF∥a; 
(Ⅱ)若EF=CF=2BC,試同在線段BE上是否存在點G,使得平面DFG⊥平面CDE,若存在,請確定G點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
1-2x
2x-a
是奇函數(shù).
(Ⅰ)求f(x)的解析式,并判斷f(x)的單調(diào)性(不必證明);
(Ⅱ)解不等式f(2x)+f(1-x)<0.

查看答案和解析>>

同步練習(xí)冊答案