已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A與橢圓的焦點(diǎn)F1重合,且橢圓的另外一個(gè)焦點(diǎn)F2在BC邊上,則△ABC的周長(zhǎng)是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


 橢圓=1的兩焦點(diǎn)為F1、F2,一直線過F1交橢圓于P、Q,則△PQF2的周長(zhǎng)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=

(1) 求橢圓C的方程;

(2) 設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.

① 當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;

② 是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 已知拋物線D的頂點(diǎn)是橢圓C:=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.

(1) 求拋物線D的方程;

(2) 過橢圓C右頂點(diǎn)A的直線l交拋物線D于M、N兩點(diǎn).

① 若直線l的斜率為1,求MN的長(zhǎng);

② 是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長(zhǎng)為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,直線l1和l2相交于點(diǎn)M,l1⊥l2,點(diǎn)N∈l1,以A、B為端點(diǎn)的曲線段C上任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點(diǎn)作圓的兩切線互相垂直,則離心率e=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知F1、F2是橢圓C的左、右焦點(diǎn),點(diǎn)P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G: (c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1) 若橢圓C經(jīng)過兩點(diǎn),求橢圓C的方程;

(2) 當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));

(3) 若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)同時(shí)滿足條件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn}叫“特界” 數(shù)列.

(1) 若數(shù)列{an}為等差數(shù)列,Sn是其前n項(xiàng)和,a3=4,S3=18,求Sn;

(2) 判斷(1)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案