分析 根據(jù)題意,利用正弦定理求得a、b、c的關(guān)系,以及a的取值范圍,再利用余弦定理求得cosB、sinB 的值,從而求得△ABC的面積S,寫出p的解析式,利用二次函數(shù)的性質(zhì)即可求得p的最大值.
解答 解:△ABC中,由sinA-sinB=$\frac{1}{3}$sinC,
利用正弦定理得c=3a-3b,
再根據(jù)3b=2a,2≤a2+ac≤18,
可得c=a,b=$\frac{2a}{3}$,1≤a≤3.
由余弦定理得 b2=$\frac{4{a}^{2}}{9}$=a2+a2-2a•a•cosB,
求得cosB=$\frac{7}{9}$,
∴sinB=$\frac{4\sqrt{2}}{9}$,
∴△ABC的面積為S=$\frac{1}{2}$•ac•sinB=$\frac{1}{2}$a2•$\frac{4\sqrt{2}}{9}$=$\frac{2\sqrt{2}}{9}$•a2,
故p=$\sqrt{2}$a-S=$\sqrt{2}$a-$\frac{2\sqrt{2}}{9}$a2=$\frac{9\sqrt{2}}{8}$-$\frac{2\sqrt{2}}{9}$(a-$\frac{9}{4}$)2,
利用二次函數(shù)的性質(zhì)結(jié)合a的范圍1≤a≤3,可得:
當(dāng)a=$\frac{9}{4}$時(shí),p取得最大值是$\frac{9\sqrt{2}}{8}$.
故答案為:$\frac{9\sqrt{2}}{8}$.
點(diǎn)評 本題主要考查了正弦定理和余弦定理的應(yīng)用問題,也考查了二次函數(shù)的最值問題,是綜合性題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3+2\sqrt{2}}}{6}$ | B. | 1 | C. | $\frac{11}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com