【題目】已知拋物線,為拋物線上的點(diǎn),若直線經(jīng)過(guò)點(diǎn)且斜率為,則稱直線為點(diǎn)的“特征直線”.設(shè)、為方程()的兩個(gè)實(shí)根,記.
(1)求點(diǎn)的“特征直線”的方程;
(2)已知點(diǎn)在拋物線上,點(diǎn)的“特征直線”與雙曲線經(jīng)過(guò)二、四象限的漸進(jìn)線垂直,且與軸的交于點(diǎn),點(diǎn)為線段上的點(diǎn).求證:;
(3)已知、是拋物線上異于原點(diǎn)的兩個(gè)不同的點(diǎn),點(diǎn)、的“特征直線”分別為、,直線、相交于點(diǎn),且與軸分別交于點(diǎn)、.求證:點(diǎn)在線段上的充要條件為(其中為點(diǎn)的橫坐標(biāo)).
【答案】(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析
【解析】
(1)計(jì)算的斜率為1,再計(jì)算直線方程得到答案.
(2)根據(jù)與漸近線垂直得到,線段的方程為,得到,代入方程得到,,計(jì)算得到.
(3))設(shè),,得到所對(duì)應(yīng)的方程為:計(jì)算得到,分別證明充分性和必要性得到答案.
(1)由題意的斜率為1,所以點(diǎn)的“特征直線”的方程為.
(2)設(shè)點(diǎn),由于雙曲線所求漸進(jìn)線的斜率為
所以,進(jìn)而得,線段的方程為
所以滿足
所對(duì)應(yīng)方程為:,解得,
因?yàn)?/span>,所以,進(jìn)而
(3)設(shè),,
則、的方程分別為,,
解、交點(diǎn)可得,,
所對(duì)應(yīng)的方程為:,
必要性:因?yàn)辄c(diǎn)在線段上
當(dāng)時(shí),,得,
當(dāng)時(shí),,得,
所以,進(jìn)而
①充分性:由,得,
當(dāng)時(shí),,得,
當(dāng)時(shí),得,得,
所以點(diǎn)在線段上.
綜上所述:點(diǎn)在線段上的充要條件為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,直線經(jīng)過(guò)點(diǎn)與相交于、兩點(diǎn).
(1)若且,求證: 必為的焦點(diǎn);
(2)設(shè),若點(diǎn)在上,且的最大值為,求的值;
(3)設(shè)為坐標(biāo)原點(diǎn),若,直線的一個(gè)法向量為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,,則下面結(jié)論正確的是( )
A.把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
B.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
C.把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
D.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在四棱錐中, 平面,底面是正方形, .
(1)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)求點(diǎn)、分別是棱和的中點(diǎn),求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種游戲中,黑、黃兩個(gè)“電子狗”從棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的頂點(diǎn)A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1→A1D1→ ,黃“電子狗”爬行的路線是AB→BB1→ ,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2015段、黃“電子狗”爬完2014段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、黃“電子狗”間的距離是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)有窮數(shù)列每相鄰兩項(xiàng)之間添加一項(xiàng),使其等于兩相鄰項(xiàng)的和,我們把這樣的操作叫做該數(shù)列的一次“H擴(kuò)展”. 已知數(shù)列1,2. 第一次“H擴(kuò)展”后得到1,3,2;第二次“H擴(kuò)展”后得到1,4,3,5,2; 那么第10次“H擴(kuò)展”后得到的數(shù)列的所有項(xiàng)的和為( )
A.88572B.88575C.29523D.29526
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:()的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)到的距離等于焦距.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是四條直線,所圍成的矩形在第一、第二象限的兩個(gè)頂點(diǎn),是橢圓上任意一點(diǎn),若,求證:為定值;
(3)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且滿足△與△的面積的比值為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是無(wú)窮等比數(shù)列,若的每一項(xiàng)都等于它后面所有項(xiàng)的倍,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com