3.若函數(shù)f(x)=${({1+sinx})^{10}}+{({1-sinx})^{10}},x∈[{-\frac{π}{2},\frac{π}{2}}]$,則其最大值為1024.

分析 求出函數(shù)的導(dǎo)數(shù)f′(x)=10(1+sinx)9cosx-10(1-sinx)9cosx,利用函數(shù)單調(diào)性及奇偶性可求解.

解答 解:f′(x)=10(1+sinx)9cosx-10(1-sinx)9cosx,
令f′(x)=0⇒(1+sinx=1-sinx或cosx=0⇒x=0或x=±$\frac{π}{2}$,
當x$∈[0,\frac{π}{2}]$時,f′(x)>0,
函數(shù)f(x)為增函數(shù),則其最大值f($\frac{π}{2}$)=210=1024,
又因為函數(shù)f(x)為偶函數(shù),其圖象關(guān)于y軸對稱,所以函數(shù)f(x)最大值1024.
故答案為:1024

點評 本題考查了利用函數(shù)的導(dǎo)數(shù)、函數(shù)單調(diào)性及奇偶性,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示是正方體的平面展開圖,在這個正方體中( 。
①BM與ED平行     
②CN與BE是異面直線;
③CN與BM成60°角; 
④DM與BN垂直.
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}(2-x)\;,\;\;\;x<2\\{x^{\frac{1}{3}}}\;\;\;\;\;\;\;\;\;\;\;\;\;,\;\;\;x≥2\end{array}$,則不等式f(x)<2的解集為( 。
A.{x|2<x<8}B.{x|-2≤x<2}C.{x|-2<x<8}D.{x|x<8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在無窮等比數(shù)列{an}中,a1=$\sqrt{3}$,a2=1,則$\underset{lim}{n→∞}$(a1+a3+a5+…+a2n-1)=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數(shù),且滿足f(x+4)=f(x),當x∈(2,4)時,f(x)=|x-3|,則f(1)+f(2)+f(3)+f(4)=(  )
A.1B.0C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,既是奇函數(shù)又是其定義域內(nèi)的增函數(shù)的為( 。
A.y=x+1B.y=$\frac{1}{x}$C.y=x3D.y=-x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=3|log3x|的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.二次函數(shù)y=x2+x-1,則函數(shù)的零點個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sinωxsin(ωx+\frac{π}{2})-{cos^2}ωx+\frac{1}{2}$(ω>0)的周期為π.
(1)求ω.
(2)若將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位后,再將得到的圖象上各點橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)表達式.

查看答案和解析>>

同步練習冊答案