已知雙曲線的離心率且點在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
(Ⅰ) .(Ⅱ) 與.
解析試題分析:(Ⅰ)由已知可知雙曲線為等軸雙曲線設(shè)a=b 1分
及點在雙曲線上解得 4分
所以雙曲線的方程為. 5分
(Ⅱ)由題意直線的斜率存在,故設(shè)直線的方程為
由 得 8分
設(shè)直線與雙曲線交于、,則、是上方程的兩不等實根,
且即且 ①
這時 ,
又
即 11分
所以 即
又 適合①式 13分
所以,直線的方程為與. 14分
另解:求出及原點到直線的距離,利用求解.
或求出直線與軸的交點,利用
求解
考點:本題考查了雙曲線方程及直線與雙曲線的位置關(guān)系
點評:涉及弦長問題,應(yīng)熟練地利用韋達定理設(shè)而不求計算弦長,還應(yīng)注意運用弦長公式的前提條件
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知過拋物線的焦點,斜率為的直線交拋物線于()兩點,且.
(1)求該拋物線的方程;
(2)為坐標原點,為拋物線上一點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點(0,-2),其傾斜角是60°.
(1)求直線l的方程;
(2)求直線l與兩坐標軸圍成三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
雙曲線與橢圓有相同的焦點,且該雙曲線
的漸近線方程為.
(1)求雙曲線的標準方程;
(2) 過該雙曲線的右焦點作斜率不為零的直線與此雙曲線的左,右兩支分別交于點、,
設(shè),當軸上的點滿足時,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.
(Ⅰ)拖動點,發(fā)現(xiàn)當時,,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點為,焦點為,構(gòu)造直線交拋物線于不同兩點、,構(gòu)造直線、分別交準線于、兩點,構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結(jié)論.
(Ⅲ)為進一步研究該拋物線的性質(zhì),某同學(xué)進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變?yōu)槠渌岸c”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為拋物線的焦點,點為拋物線內(nèi)一定點,點為拋物線上一動點,最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系中,以O(shè)為極點,軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,曲線的參數(shù)方程為,(為參數(shù),)。
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)當C1與C2有兩個公共點時,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com