3.平面上有n條直線,它們?nèi)魏蝺蓷l不平行,任何三條不共點(diǎn),設(shè)k條這樣的直線把平面分成f(k)個(gè)區(qū)域,且已知f(2)=4,f(3)=7,f(4)=11,則f(5)=16,k+1條直線把平面分成的區(qū)域數(shù)f(k+1)=f(k)+k+1.

分析 1條直線把平面分成2個(gè)區(qū)域,2條直線馬平面分成2+2個(gè)區(qū)域,3條把平面分成2+2+3個(gè)區(qū)域,4條直線把平面分成2+2+3+4個(gè)區(qū)域,由此可知若n條直線把平面分成f(k)個(gè)區(qū)域,則f(k+1)-f(k)=k+1.

解答 解:1條直線把平面分成2個(gè)區(qū)域,
2條直線馬平面分成2+2個(gè)區(qū)域,
3條把平面分成2+2+3個(gè)區(qū)域,
4條直線把平面分成2+2+3+4個(gè)區(qū)域,
5條直線把平面分成2+2+3+4+5=16個(gè)區(qū)域,
由此可知若n條直線把平面分成f(k)個(gè)區(qū)域,則f(k+1)-f(k)=k+1.
故答案為:16,k+1.

點(diǎn)評(píng) 本題主要考查了歸納推理,以及數(shù)列遞推式,屬于中檔題.所謂歸納推理,就是從個(gè)別性知識(shí)推出一般性結(jié)論的推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓錐的底面半徑為R,高為2R,在它的所有內(nèi)接圓柱中,側(cè)面積的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元錢(qián)可購(gòu)買(mǎi)一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng),顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、1元,若經(jīng)營(yíng)者將顧客摸出的3個(gè)球的顏色情況分成以下類(lèi)別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營(yíng)者計(jì)劃將五種類(lèi)別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(1)請(qǐng)寫(xiě)出一至四等獎(jiǎng)分別對(duì)應(yīng)的類(lèi)別(寫(xiě)出字母即可);
(2)若經(jīng)營(yíng)者不打算在這個(gè)游戲的經(jīng)營(yíng)中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,高二月考考試后,將高二(3)班男生、女生各四名同學(xué)的數(shù)學(xué)成績(jī)(單位:分)用莖葉圖表示.女生某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x,已知男生、女生的平均成績(jī)相同.
(Ⅰ)求x的值,并判斷男生與女生哪組學(xué)生成績(jī)更穩(wěn)定;
(Ⅱ)在男生、女生中各抽取1名同學(xué),求這2名同學(xué)的得分之和低于200分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$處取最大值為3,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為$\frac{π}{2}$,
(1)求函數(shù)f(x)的解析式;
(2)設(shè)x∈[0,$\frac{π}{2}$],f(x)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知實(shí)數(shù)a,函數(shù)f(x)=ex-1-ax的圖象與x軸相切.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),f(x)>m(x-1)lnx,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為研究“在n次獨(dú)立重復(fù)試驗(yàn)中,事件A恰好發(fā)生k次的概率的和”這個(gè)課題,我們可以分三步進(jìn)行研究:(I)取特殊事件進(jìn)行研究;(Ⅱ)觀察分析上述結(jié)果得到研究結(jié)論;(Ⅲ)試證明你得到的結(jié)論.現(xiàn)在,請(qǐng)你完成:
(1)拋擲硬幣4次,設(shè)P0,P1,P2,P3,P4分別表示正面向上次數(shù)為0次,1次,2次,3次,4次的概率,求P0,P1,P2,P3,P4(用分?jǐn)?shù)表示),并求P0+P1+P2+P3+P4;(2)拋擲一顆骰子三次,設(shè)P0,P1,P2,P3分別表示向上一面點(diǎn)數(shù)是3恰好出現(xiàn)0次,1次,2次,3次的概率,求P0,P1,P2,P3(用分?jǐn)?shù)表示),并求P0+P1+P2+P3;
(3)由(1)、(2)寫(xiě)出結(jié)論,并對(duì)得到的結(jié)論給予解釋或給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求滿足下列條件的實(shí)數(shù)x的取值范圍:
(1)3x<9;
(2)2x>$\frac{1}{8}$;
(3)($\frac{1}{3}$)x>$\root{3}{9}$;
(4)3x>7x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.從甲地到乙地一天有汽車(chē)5班,火車(chē)6列,輪船2輪,某人從甲地到乙地,共有不同的走法數(shù)為(  )
A.60種B.40種C.22種D.13種

查看答案和解析>>

同步練習(xí)冊(cè)答案