(本小題滿分12分)
設(shè),且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求的取值范圍;
(2)討論函數(shù)的單調(diào)性并證明.
(1). (2)在(-b,b)內(nèi)是減函數(shù),具有單調(diào)性.
【解析】
試題分析:(1)由函數(shù)f(x)在區(qū)間(-b,b)是奇函數(shù),知f(-x)=-f(x),x∈(-b,b)上恒成立,用待定系數(shù)法求得a;同時函數(shù)要有意義,即>0,x∈(-b,b)上恒成立,可解得結(jié)果.
(2)選用定義法求解,先任意取兩個變量且界定大小,再作差變形看符號.
解 (1)是奇函數(shù)等價于:
對任意都有…………………2分
(1)式即為,由此可得,也即,…………………4分
此式對任意都成立相當(dāng)于,因為,所以,
代入②式,得>0,即,此式對任意都成立相當(dāng)于,…………………6分
所以的取值范圍是.…………………7分
(2)設(shè)任意的,且,由,得,
所以…………………9分
從而
因此在(-b,b)內(nèi)是減函數(shù),具有單調(diào)性. …………………12分
考點:本試題主要考查了函數(shù)的奇偶性,還考查了用定義法證明函數(shù)的單調(diào)性的運用。
點評:解決該試題的關(guān)鍵是要注意定義域優(yōu)先考慮原則,以及作差時的變形要到位,要用上兩個變量的大小關(guān)系。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com