6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2-3Sn(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{an+bn}的前n項(xiàng)和Tn

分析 (I)利用公式an=Sn-Sn-1判斷{an}為等比數(shù)列,再得出通項(xiàng)公式;
(II)先求出bn得出{bn}為等差數(shù)列,將兩數(shù)列分別求和得出Tn

解答 解(Ⅰ)當(dāng)n≥2時(shí),由an=2-3Sn①,得an-1=2-3Sn-1②,
①-②即得4an=an-1,
而當(dāng)n=1時(shí),a1=2-3a1,故${a_1}=\frac{1}{2}$,
因而數(shù)列{an}是首項(xiàng)為$\frac{1}{2}$公比為$\frac{1}{4}$的等比數(shù)列,
∴${a_n}=\frac{1}{2}•{({\frac{1}{4}})^{n-1}}={({\frac{1}{2}})^{2n-1}},n∈{N^*}$.
(Ⅱ)由(Ⅰ)知${a_n}={({\frac{1}{2}})^{2n-1}}$,故bn=1-2n.
∴{bn}是以-1為首項(xiàng),以-2為公差的等差數(shù)列.
數(shù)列{an+bn}的前n項(xiàng)和Tn=(a1+a2+…+an)+(b1+b2+…+bn
=$\frac{\frac{1}{2}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$+$\frac{(-1+1-2n)n}{2}$=$\frac{2}{3}$-n2-$\frac{2}{3•{4}^{n}}$.

點(diǎn)評(píng) 本題考查了等差,等比關(guān)系的判斷,數(shù)列的求和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=mxex(m∈R),其中f'(0)=1.
(I)求實(shí)數(shù)m的值;
(II)求函數(shù)f(x)在區(qū)間[-2,0]的最值;
(III)是否存在實(shí)數(shù)a,使得對(duì)任意的x1,x2∈(a,+∞),當(dāng)x1<x2時(shí),恒有$\frac{{f({x_2})-f(a)}}{{{x_2}-a}}$>$\frac{{f({x_1})-f(a)}}{{{x_1}-a}}$成立,若存在,求a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x+aex(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x<0,a≤1時(shí),證明:x2+(a+1)x>xf′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}為等差數(shù)列,且a3=5,a6=11.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=3,b2=a1+a2+a3,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$+φ),φ∈(0,π)滿足f(|x|)=f(x),則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax+a+2,
(1)記f(sinx),x∈R的最大值為M(a),求M(a);
(2)若g(x)=f(x)+|x2-1|在區(qū)間(0,3)內(nèi)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.樣本數(shù)據(jù)-2,0,5,3,4的方差是$\frac{34}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在實(shí)數(shù)a,b,c,d滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則a+b+c+d的取值范圍是( 。
A.(12,$\frac{25}{2}$)B.(16,24)C.(12,+∞)D.(18,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知命題p:“?x>0,sinx≥1”,則¬p為(  )
A.?x>0,sinx≥1B.?x≤0,sinx<1C.?x>0,sinx<1D.?x≤0,sin≥1

查看答案和解析>>

同步練習(xí)冊(cè)答案