設(shè)數(shù)列{an}為等差數(shù)列,若a1+a3+a13+a15=120,則a8=( 。
A、60B、30C、20D、15
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:直接由等差數(shù)列的性質(zhì)結(jié)合已知條件列式求得a8的值.
解答: 解:在等差數(shù)列{an}中,由等差數(shù)列的性質(zhì),得a1+a15=a3+a13=2a8,
∵a1+a3+a13+a15=120,
∴4a8=120,a8=30.
故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),在等差數(shù)列中,若m、n、p、q、k∈N*,且m+n=p+q=2k,則am+an=ap+aq=2ak,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示(單位cm),則3個(gè)這樣的幾何體的體積之和為
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin
π
2
x
,任取t∈R,記函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為Mt,最小值為mt,記h(t)=Mt-mt.則關(guān)于函數(shù)h(t)有如下結(jié)論:
①函數(shù)h(t)為偶函數(shù);
②函數(shù)h(t)的值域?yàn)閇1-
2
2
,1];
③函數(shù)h(t)的周期為2;
④函數(shù)h(t)的單調(diào)增區(qū)間為[2k+
1
2
,2k+
3
2
],k∈Z.
其中正確的結(jié)論有
 
.(填上所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a∈R,則“a=3”是“(a+1)(a-3)=0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其側(cè)視圖是一個(gè)邊長(zhǎng)為1的等邊三角形,俯視圖是兩個(gè)正三角形拼成,則該幾何體的體積為( 。
A、1
B、
1
2
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知定義在R上的函數(shù)y=f(x)滿足f(x)=f(4-x),且當(dāng)x≠2時(shí),其導(dǎo)函數(shù)f′(x)滿足f′(x)>
1
2
xf′(x),若a∈(2,3),則(  )
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(2a)<f(log2a)<f(2)
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
2-i
3+i
等于( 。
A、
1
2
+
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4x=0,直線l:x+my-3=0,則( 。
A、l與C相交
B、l與C相切
C、l與C相離
D、以上三個(gè)選項(xiàng)均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、4+4
3
B、
4
3
3
C、12
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案