10.設(shè)不等式組$\left\{\begin{array}{l}{2x-y+3≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$表示的平面區(qū)為D,P(x,y)為D內(nèi)一動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x-2y+5的最大值為8.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.

解答 解:由z=x-2y+5得y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$
由圖象可知當(dāng)直線y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$,過(guò)點(diǎn)A時(shí),直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此時(shí)z最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,代入目標(biāo)函數(shù)z=x-2y+5,得z=1+2+5=8,
∴目標(biāo)函數(shù)z=x-2y+5的最大值是8.
故答案為:8

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問(wèn)題的關(guān)鍵,利用數(shù)形結(jié)合是解決問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個(gè))222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ) 若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式:b=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax-$\frac{x}-2lnx{,_{\;}}$f(1)=0
(Ⅰ)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若函數(shù)f(x)的圖象在x=1處的切線斜率為0,且g(x)=$\frac{1}{{{{(1-x)}^n}}}+\frac{x-1}{2}-\frac{1}{2x-2}-\frac{1}{2}$f(x-1),(x≥2,n∈N*)證明:對(duì)任意的正整數(shù)n,當(dāng)x≥2時(shí),有g(shù)(x)≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.不等式x2-2x+3<0的解集是( 。
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|x<-3或x>1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果等差數(shù)列{an}中,a3+a4+a5=12,那么S7=(  )
A.14B.21C.28D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.高三學(xué)習(xí)雷鋒志愿小組共有16人,其中一班、二班、三班、四班各4人,現(xiàn)在從中任選3人,要求這三人不能是同一個(gè)班級(jí)的學(xué)生,且在三班至多選1人,不同的選取法的種數(shù)為472.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|y=log2(x-1)},B=$\left\{{y\left|{y=\sqrt{x-1}}\right.}\right\}$,則A∩B=(  )
A.ϕB.(1,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知cosα=$\frac{12}{13}$,α∈($\frac{3π}{2}$,2π),tanβ=$\frac{4}{3}$,β∈(0,π),求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖形,求A,ω,φ的值,并確定其函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案