【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos( )=1,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

【答案】
(1)解:由

從而C的直角坐標(biāo)方程為

θ=0時(shí),ρ=2,所以M(2,0)


(2)解:M點(diǎn)的直角坐標(biāo)為(2,0)

N點(diǎn)的直角坐標(biāo)為

所以P點(diǎn)的直角坐標(biāo)為 ,則P點(diǎn)的極坐標(biāo)為 ,

所以直線OP的極坐標(biāo)方程為 ,ρ∈(﹣∞,+∞)


【解析】(1)先利用三角函數(shù)的差角公式展開曲線C的極坐標(biāo)方程的左式,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進(jìn)行代換即得.(2)先在直角坐標(biāo)系中算出中點(diǎn)P的坐標(biāo),再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系求出其極坐標(biāo)和直線OP的極坐標(biāo)方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x| <0,x∈R},B={x|x2﹣2x﹣m<0,x∈R}
(1)當(dāng)m=3時(shí),求A∩(RB);
(2)若A∩B={x|﹣1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若以曲線上任意一點(diǎn)為切點(diǎn)作切線,曲線上總存在異于的點(diǎn),以點(diǎn)為切點(diǎn)作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:

①函數(shù)的圖象具有“可平行性”;

②定義在的奇函數(shù)的圖象都具有“可平行性”;

③三次函數(shù)具有“可平行性”,且對(duì)應(yīng)的兩切點(diǎn) 的橫坐標(biāo)滿足;

④要使得分段函數(shù)的圖象具有“可平行性”,當(dāng)且僅當(dāng).

其中的真命題個(gè)數(shù)有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)為自然對(duì)數(shù)的底數(shù)), .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镽,f(﹣1)=2,對(duì)任意x∈R,f′(x)>2,則f(x)>2x+4的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把復(fù)數(shù)z的共軛復(fù)數(shù)記作 ,i為虛數(shù)單位,若z=1+i.
(1)求復(fù)數(shù)(1+z)
(2)求(1+ )z2的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0, >0(x>0),則不等式x2f(x)>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點(diǎn)在平面上的射影恰好是線段的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案