【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.

【答案】
(1)解:當(dāng)a=﹣1時(shí),f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3

據(jù)絕對(duì)值幾何意義求解,|x﹣1|+|x+1|≥3幾何意義,是數(shù)軸上表示實(shí)數(shù)x的點(diǎn)距離實(shí)數(shù)1,﹣1表示的點(diǎn)距離之和不小3,

由于數(shù)軸上數(shù)﹣ 左側(cè)的點(diǎn)與數(shù) 右側(cè)的點(diǎn)與數(shù)﹣1與1的距離之和不小3,

所以所求不等式解集為(﹣∞,﹣ ]∪[ ,+∞)


(2)解:由絕對(duì)值的幾何意義知,數(shù)軸上到1的距離與到a的距離之和大于等于2恒成立,則1與a之間的距離必大于等于2,從而有a∈(﹣∞,﹣1]∪[3,+∞)
【解析】(1)當(dāng)a=﹣1,原不等式變?yōu)椋簗x﹣1|+|x+1|≥3,下面利用對(duì)值幾何意義求解,利用數(shù)軸上表示實(shí)數(shù)﹣ 左側(cè)的點(diǎn)與表示實(shí)數(shù) 右側(cè)的點(diǎn)與表示實(shí)數(shù)﹣1與1的點(diǎn)距離之和不小3,從而得到不等式解集.(2)欲求當(dāng)x∈R,f(x)≥2,a的取值范圍,先對(duì)a進(jìn)行分類討論:a=1;a<1;a>1.對(duì)后兩種情形,只須求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要條件是|a﹣1|≥2即可求得結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路,在點(diǎn)處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與分別交于,要求與扇形弧相切,切點(diǎn)不在,上.

(1)設(shè)試用表示新建公路的長度,求出滿足的關(guān)系式,并寫出的范圍;

(2)設(shè),試用表示新建公路的長度,并且確定的位置,使得新建公路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn). (Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個(gè)零點(diǎn),則m的取值范圍為(
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos( )=1,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對(duì)稱,且g(x)的圖象過(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足條件an+1=
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知對(duì)任意的n∈N+ , 都有an≠1,求證:an+3=an對(duì)任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號(hào)中各選取部進(jìn)行測試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部求這兩部手機(jī)中恰有一部手機(jī)的供電時(shí)間大于該種手機(jī)供電時(shí)間平均值的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案