分析 先求出幾個(gè)特殊的值,再分析前k條直線與第k+1條直線,把平面分成的區(qū)域之間的關(guān)系,歸納出關(guān)系式f(k+1)-f(k)=k+1,再根據(jù)數(shù)列求和求出f(n)的關(guān)系式,問題解決.
解答 解:一條直線(k=1)把平面分成了2部分,記為f(1)=2,f(2)=4,f(3)=7,…
設(shè)前k條直線把平面分成了f(k)部分,
第k+1條直線與原有的k條直線有k個(gè)交點(diǎn),這k個(gè)交點(diǎn)將第k+1條直線分為k+1段,
這k+1段將平面上原來的f(k)部分的每一部分分成了2個(gè)部分,共2(k+1)部分,相當(dāng)于增加了k+1個(gè)部分,
∴第k+1條直線將平面分成了f(k+1)部分,
則f(k+1)-f(k)=k+1,令k=1,2,3,….n得
f(2)-f(1)=2,f(3)-f(2)=3,…,f(n)-f(n-1)=n,
把這n-1個(gè)等式累加,得 f(n)=2+$\frac{(n+2)(n-1)}{2}$=2+$\frac{{n}^{2}+n-2}{2}$=$\frac{{{n^2}+n+2}}{2}$.
故答案為:7,$\frac{{{n^2}+n+2}}{2}$.
點(diǎn)評 本題主要考查了歸納推理,以及數(shù)列遞推式,屬于中檔題.所謂歸納推理,就是從個(gè)別性知識推出一般性結(jié)論的推理.考查學(xué)生的推理能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | ||
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+e | B. | e-1 | C. | 1-e | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{7}{5}$ | C. | ±$\frac{1}{5}$ | D. | ±$\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | -$\frac{7}{8}$ | C. | $\frac{{\sqrt{15}}}{4}$ | D. | -$\frac{{\sqrt{15}}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com