3.設(shè)變量 x,y 滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=y-2x的最大值為( 。
A.0B.1C.2D.3

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$作出可行域如圖,

化目標(biāo)函數(shù)z=y-2x為y=2x+z,
由圖可得,當(dāng)直線y=2x+z過點A(-1,0)時,
直線在y軸上的截距最大,z有最大值為2.
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}中,如果an=2n,n∈N*,那么這個數(shù)列是(  )
A.公差為2的等差數(shù)列B.首項為1的等差數(shù)列
C.公比為2的等比數(shù)列D.首項為1的等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.拋物線的焦點F是圓x2+y2-4x=0的圓心.
(1)求該拋物線的標(biāo)準(zhǔn)方程;
(2)直線l的斜率為2,且過拋物線的焦點,若l與拋物線、圓依次交于A,B,C,D,求|AB|+|CD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.關(guān)于漸開線和擺線的敘述,正確的是( 。
A.只有圓才有漸開線
B.漸開線和擺線的定義是一樣的,只是繪圖的方法不一樣,所以才得到了不同的圖形
C.正方形也可以有漸開線
D.對于同一個圓,如果建立的直角坐標(biāo)系的位置不同,畫出的漸開線形狀就不同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某畜牧站為了考查某種新型藥物預(yù)防動物疾病的效果,利用小白鼠進(jìn)行試驗,得到如下丟失數(shù)據(jù)的2×2列聯(lián)表
  患病 未患病 總計
 沒服用藥 20 30 50
 服用藥 x y 50
 總計 M N 100
設(shè)從沒服用藥的小白鼠中任取兩只,未患病的動物數(shù)為X,從服用藥物的小白鼠中任取兩只,未患病的動物數(shù)為Y,得到如下比例關(guān)系:P(X=0):P(Y=0)=38:9
(Ⅰ)求出2×2列聯(lián)表中數(shù)據(jù)x,y,M,N的值
(Ⅱ)是否有99%的把握認(rèn)為藥物有效?并說明理由
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,當(dāng)K2≥3.841時,有95%的把握認(rèn)為A與B有關(guān);K2≥6.635時,有99%的把握認(rèn)為A與B有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若ξ~B(n,p),且E(ξ)=3,D(ξ)=$\frac{3}{2}$,則P(ξ=1)的值為 ( 。
A.$\frac{3}{2}$B.$\frac{1}{4}$C.$\frac{1}{32}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,a3=3,S6=21.
(1)求{an}的通項公式;
(2)設(shè)bn=an+2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=2,左右焦點分別為F1、F2,右頂點為A,若|F1F2|=4.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若P是雙曲線上的任意一點,求$\overrightarrow{P{F}_{1}}$$•\overrightarrow{PA}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個正六棱錐的底面邊長為6cm,高為15cm則該棱錐的體積為$270\sqrt{3}$cm3

查看答案和解析>>

同步練習(xí)冊答案