((本小題滿分14分)
已知兩點(diǎn)M(-1,0),N(1,0),且點(diǎn)P使,成公差小于零的等差數(shù)列。
(1)點(diǎn)P的軌跡是什么曲線?
(2)若點(diǎn)P的坐標(biāo)為(x0,y0),記為θ的夾角,求tanθ
解:(1)記P(x,y),由M(-1,0),N(1,0)得
=(-1-x,-y),=(1-x,-y),=(2,0)
所以=2(1+x),= x2+y2-1,=2(1-x)……3分
于是,,是公差小于零的等差數(shù)列,等價(jià)于
,即,
所以,點(diǎn)P的軌跡是以原點(diǎn)為圓心,為半徑的右半圓.…………………6分
(2)點(diǎn)P的坐標(biāo)為(x0,y0).
=,
=,
所以.………………………………………9分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181647896433.gif" style="vertical-align:middle;" />,所以,…………………………11分
,
.……………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)、,已知,的垂直平分線,當(dāng)點(diǎn)為動點(diǎn)時(shí),點(diǎn)的軌跡圖形設(shè)為

(1)求的標(biāo)準(zhǔn)方程;
(2)點(diǎn)上一動點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),曲線的右焦點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一圓形紙片的圓心為O,  F是圓內(nèi)一定點(diǎn),M是圓周
上一動點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕
為CD, 設(shè)CD與OM交于P, 則點(diǎn)P的軌跡是( 
A.橢圓B.雙曲線
C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若曲線C上的點(diǎn)到直線的距離比它到點(diǎn)F的距離大1,
(1)求曲線C的方程。
(2)過點(diǎn)F(1,0)作傾斜角為的直線交曲線C于A、B兩點(diǎn),求AB的長
(3)過點(diǎn)F(1,0)作斜率為k 的直線交曲線C于M、N 兩點(diǎn),求證:
 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x的焦點(diǎn)是F,準(zhǔn)線是l,點(diǎn)M(1,2)是拋物線上一點(diǎn),則經(jīng)過點(diǎn)F、M且與l相切的圓一共有
A.0個(gè)B.1個(gè)C.2個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)、,記的中點(diǎn)為,取中的一條,記其端點(diǎn)為、,使之滿足;記的中點(diǎn)為,取中的一條,記其端點(diǎn)為、,使之滿足;依次下去,得到點(diǎn),則    。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與曲線有兩個(gè)交點(diǎn),則的取值范圍是          .

查看答案和解析>>

同步練習(xí)冊答案