分析 由于A,B連線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),所以A,B一定關(guān)于原點(diǎn)對(duì)稱(chēng),利用直線(xiàn)PA,PB的斜率乘積,可尋求幾何量之間的關(guān)系,從而可求離心率.
解答 解:根據(jù)雙曲線(xiàn)的對(duì)稱(chēng)性可知A,B關(guān)于原點(diǎn)對(duì)稱(chēng),
設(shè)A(x1,y1),B(-x1,-y1),P(x,y),
則$\frac{{{x}_{1}}^{2}}{{a}^{2}}-\frac{{{y}_{1}}^{2}}{^{2}}=1$,
∵$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,
∴兩式相減整理可得$\frac{{y}^{2}-{{y}_{1}}^{2}}{{x}^{2}-{{x}_{1}}^{2}}$=$\frac{^{2}}{{a}^{2}}$
∴k1•k2=$\frac{{y}^{2}-{{y}_{1}}^{2}}{{x}^{2}-{{x}_{1}}^{2}}$=$\frac{^{2}}{{a}^{2}}$=2,
∴該雙曲線(xiàn)的離心率e=$\sqrt{1+2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查雙曲線(xiàn)的幾何性質(zhì),考查點(diǎn)差法,關(guān)鍵是設(shè)點(diǎn)代入化簡(jiǎn),應(yīng)注意雙曲線(xiàn)幾何量之間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com