A. | [6,10] | B. | [6,8] | C. | [8,10] | D. | [8,11] |
分析 設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得a=11,b=8,可得橢圓方程,設(shè)出P(m,n),代入橢圓方程,求出|OP|,由橢圓的范圍可得|OP|的最值,進(jìn)而得到所求范圍.
解答 解:設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
可得2a=22,即a=11,
2b=16,即b=8,
則橢圓方程為$\frac{{x}^{2}}{121}$+$\frac{{y}^{2}}{64}$=1,
設(shè)橢圓的點(diǎn)為P(m,n),
即有$\frac{{m}^{2}}{121}$+$\frac{{n}^{2}}{64}$=1,即為n2=64(1-$\frac{{m}^{2}}{121}$),
可得|OP|=$\sqrt{{m}^{2}+{n}^{2}}$=$\sqrt{{m}^{2}+64-\frac{64}{121}{m}^{2}}$
=$\sqrt{64+\frac{57}{121}{m}^{2}}$,
由-11≤m≤11,可得m=0時(shí),|OP|取得最小值8;
m=±11時(shí),|OP|取得最大值11.
則橢圓上的點(diǎn)到橢圓中心距離的取值范圍是[8,11].
故選:D.
點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),主要是橢圓的范圍,考查兩點(diǎn)的距離公式和二次函數(shù)的最值求法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④⑤ | B. | ②③⑥ | C. | ①③⑤ | D. | ②④⑥ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x0∈(-4,-3) | B. | x0∈(-3,-2) | C. | x0∈(-2,-1) | D. | x0∈(-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com