14.我國古代數(shù)學(xué)家劉徽(如圖1)在學(xué)術(shù)研究中,不迷信古人,堅(jiān)持實(shí)事求是,他對《九章算術(shù)》中“開立圓術(shù)”給出的公式產(chǎn)生質(zhì)疑,為了證實(shí)自己的猜測,他引入了一種新的幾何體“牟盒方蓋”:一正方體相鄰的兩個側(cè)面為底座兩次內(nèi)切圓柱切割,然后剔除外部,剩下的內(nèi)核部分(如圖2).如果“牟盒方蓋”的主視圖和左視圖都是圓,則其俯視圖形狀為下列幾幅圖中的( 。
A.B.C.D.

分析 主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.根據(jù)“牟盒方蓋”的主視圖和左視圖都是圓,可得其俯視圖形狀.

解答 解:由題意,“牟盒方蓋”的主視圖和左視圖都是圓,則其俯視圖形狀為
故選B.

點(diǎn)評 考查學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對空間想象能力方面的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求BD1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.曲線f(x)=xex在點(diǎn)P(1,e)處的切線與坐標(biāo)軸圍成的三角形面積為$\frac{e}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學(xué)家秦九韶在其著作《數(shù)學(xué)九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”,如圖2程序框圖的算法思路源于“大衍求一術(shù)”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=(  )
A.1B.6C.7D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z滿足($\sqrt{3}$+i)•z=4i,其中i為虛數(shù)單位,則z=( 。
A.1-$\sqrt{3}$iB.$\sqrt{3}$-iC.$\sqrt{3}$+iD.1+$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(sin$\frac{x}{2}$+cos$\frac{x}{2}$)2-2$\sqrt{3}$cos2$\frac{x}{2}$+$\sqrt{3}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{xlnx-2x,x>0}\\{{x}^{2}+\frac{3}{2}x,x≤0}\end{array}\right.$的圖象上有且僅有四個不同的點(diǎn)關(guān)于直線y=-1的對稱點(diǎn)在y=kx-1的圖象上,則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正實(shí)數(shù)a,b滿足$\frac{1}{{({2a+b})b}}+\frac{2}{{({2b+a})a}}=1$,則ab的最大值為2-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在如圖所示的幾何體中,四邊形ABCD為矩形,直線AF⊥平面ABCD,EF∥AB,AD=2,AB=AF=2EF=1,點(diǎn)P在棱DF上.
(1)求證:AD⊥BF;
(2)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;
(3)若$\overrightarrow{FP}=\frac{1}{3}\overrightarrow{FD}$,求二面角D-AP-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案