18.在平面直角坐標(biāo)系xOy中,已知A(1,0),B(4,0),直線x-y+m=0上存在唯一的點(diǎn)P滿足$\frac{PA}{PB}$=$\frac{1}{2}$,則實(shí)數(shù)m的取值集合是{-2$\sqrt{2}$,2$\sqrt{2}$}.

分析 設(shè)出點(diǎn)P(x,x+m),由$\frac{PA}{PB}$=$\frac{1}{2}$得出4|PA|2=|PB|2,利用兩點(diǎn)之間的距離公式求出m的解析式,
通過三角函數(shù)代換即可得出它的取值集合.

解答 解:根據(jù)題意,設(shè)P(x,x+m),
∵$\frac{PA}{PB}$=$\frac{1}{2}$,∴4|PA|2=|PB|2,
∴4(x-1)2+4(x+m)2=(x-4)2+(x+m)2,
化為(x+m)2=4-x2
∴4-x2≥0,解得x∈[-2,2],
∴m=-x±$\sqrt{4{-x}^{2}}$,
令x=2cosθ,θ∈[0,π],
∴m=-2cosθ±2sinθ
=±2$\sqrt{2}$sin(θ±$\frac{π}{4}$)∈[-2$\sqrt{2}$,2$\sqrt{2}$],
故實(shí)數(shù)m的取值范圍是{-2$\sqrt{2}$,2$\sqrt{2}$}.
故答案為:{-2$\sqrt{2}$,2$\sqrt{2}$}.

點(diǎn)評 本題考查了兩點(diǎn)之間的距離公式、和差化積、三角函數(shù)的求值與應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過點(diǎn)F的直線與拋物線C交于點(diǎn)A,B兩點(diǎn),且直線l與圓x2-px+y2-$\frac{3}{4}{p^2}$=0交于C,D兩點(diǎn),若|AB|=2|CD|,則直線l的斜率為( 。
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{{\sqrt{3}}}{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}x-2y+8≥0\\ x-y-1≤0\\ 2x+y-4≥0\end{array}\right.$,則$\frac{y}{x+1}$的最小值是$\frac{1}{4}$;|2x-y-2|的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知銳角△ABC內(nèi)角A,B,C的對邊分別是a,b,c,23cos2A+cos2A=0,a=7,c=6,則b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正四棱錐P-ABCD中,AB=2,PA=$\sqrt{5}$.
(1)求側(cè)面PAD與側(cè)面PBC所成二面角的大小;
(2)在直線PA上是否存在點(diǎn)E,使CE⊥平面PAD.若存在,指出點(diǎn)E的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知偶函數(shù)F(x)=$\frac{f(x)}{x}$,且f(-1)=0,當(dāng)x>0時,xf′(x)-f(x)<0,則使得f(x)>0的x的取值范圍是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x<-2或x>1},B={x|x>2或x<0},則(∁RA)∩B=( 。
A.(-2,0)B.[-2,0)C.D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x2<1},N={y|y=log2x,x>2},則下列結(jié)論正確的是( 。
A.M∩N=NB.M∩(∁UN)=∅C.M∪N=UD.M⊆(∁UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O是坐標(biāo)原點(diǎn).A(2,-1),B(-4,8).
(1)求$\overrightarrow{AB}$的坐標(biāo)及|$\overrightarrow{AB}$|;
(2)求與$\overrightarrow{AB}$平行的單位向量;
(3)求與$\overrightarrow{AB}$平行且模長為2的向量;
(4)求與$\overrightarrow{AB}$垂直的單位向量;
(5)求與$\overrightarrow{AB}$垂直且模長為2的向量;
(6)求$\overrightarrow{OA}$$•\overrightarrow{OB}$;
(7)求$\overrightarrow{OA}$在$\overrightarrow{OB}$上的射影;
(8)求$\overrightarrow{OB}$在$\overrightarrow{OA}$上的射影;
(9)求$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角.

查看答案和解析>>

同步練習(xí)冊答案