函數(shù)y=2x2-ln2x的單調(diào)遞減區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的定義域和導(dǎo)數(shù),利用f′(x)<0,即可得到結(jié)論.
解答: 解:函數(shù)的定義域?yàn)椋?,+∞),
則函數(shù)的導(dǎo)數(shù)為f′(x)=4x-
2
2x
=4x-
1
x

由f′(x)<0得4x-
1
x
<0,則x2
1
4
,
解得0<x<
1
2
,
即函數(shù)的單調(diào)遞減區(qū)間(0,
1
2
),
故答案為:(0,
1
2
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)區(qū)間的求解,求函數(shù)的導(dǎo)數(shù)解導(dǎo)數(shù)不等式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1,b3為方程x2-5x+4=0的兩根.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若an=log2bn+3,求證:數(shù)列{an}是等差數(shù)列;
(Ⅲ)若cn=an•bn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x
-x(x≥0)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,則曲線C的直角坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|x+2|-|x-2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
π
2
-
1
2
arccosx,它的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,過(guò)點(diǎn)P(4
3
π
3
)作曲線C:p=4sinθ的切線,則切線長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(
1
2
x+log 
1
2
x在區(qū)間[1,2]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是(  )
A、sin2x
B、x+sinx
C、x3-x
D、-x+ln(1+x)

查看答案和解析>>

同步練習(xí)冊(cè)答案