(2011•聊城一模)若函數(shù)f(x)=ex-a-
2x
恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
a≤0
a≤0
分析:先討論函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性以及變化趨勢(shì),畫出函數(shù)的圖象,由圖象得出a的取值范圍.
解答:解:f(x)=ex-a-
2
x
的定義域?yàn)閧x|x≠0},f′(x)=ex+
2
x2
>0,
∴f(x)在(-∞,0),(0,+∞)上單調(diào)遞增,
且x→+∞時(shí),f(x)→+∞,x→0+時(shí),f(x)→-∞,
x→-∞時(shí),f(x)→0,x→0-時(shí),f(x)→+∞,
∴f(x)的大致圖象為如圖所示,
根據(jù)函數(shù)的圖象知實(shí)數(shù)a的取值范圍是a≤0
故答案為:a≤0
點(diǎn)評(píng):利用導(dǎo)數(shù)工具討論函數(shù)的單調(diào)性,是求函數(shù)的值域和最值的常用方法,本題可以根據(jù)單調(diào)性,結(jié)合函數(shù)的圖象與x軸交點(diǎn),來(lái)幫助對(duì)題意的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過(guò)點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)在2010年上海世博會(huì)期間,小紅計(jì)劃對(duì)事先選定的10個(gè)場(chǎng)館進(jìn)行參觀,在她選定的10個(gè)場(chǎng)館中,有4個(gè)場(chǎng)館分布在A片區(qū),3個(gè)場(chǎng)館分布在B片區(qū),3個(gè)場(chǎng)館分布在C片區(qū).由于參觀的人很多,在進(jìn)入每個(gè)場(chǎng)館前都需要排隊(duì)等候,已知A片區(qū)的每個(gè)場(chǎng)館的排隊(duì)時(shí)間為2小時(shí),B片區(qū)和C片區(qū)的每個(gè)場(chǎng)館的排隊(duì)時(shí)間都為1小時(shí).參觀前小紅突然接到公司通知,要求她一天后務(wù)必返回,于是小紅決定從這10個(gè)場(chǎng)館中隨機(jī)選定3個(gè)場(chǎng)館進(jìn)行參觀.
(Ⅰ)求小紅每個(gè)片區(qū)都參觀1個(gè)場(chǎng)館的概率;
(Ⅱ)設(shè)小紅排隊(duì)時(shí)間總和為ξ(小時(shí)),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}是等差數(shù)列,且b1=3,b10-b4=6
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
bnan
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)函數(shù)f(x)=4cosx-ex2的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)執(zhí)行如圖所示的程序框圖后,若輸出的結(jié)果為16,則判斷框內(nèi)應(yīng)填( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案