15.i為虛數(shù)單位,則i+i2+i3+i4=( 。
A.0B.iC.2iD.-i

分析 直接利用虛數(shù)單位i的性質(zhì)運(yùn)算.

解答 解:由i2=-1可知,i+i2+i3+i4=i-1-i+1=0.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)的基本概念及運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x}{{{e^{x.}}}}$-mx(m∈R).
(Ⅰ)當(dāng)m=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b>a>0時(shí),總有$\frac{f(b)-f(a)}{b-a}$>1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z滿足(1-i)2•z=1+2i,則在復(fù)平面內(nèi)復(fù)數(shù)$\overline z$對應(yīng)的點(diǎn)為( 。
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.醫(yī)學(xué)上某種還沒有完全攻克的疾病,治療時(shí)需要通過藥物控制其中的兩項(xiàng)指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒有影響.
(Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項(xiàng)指標(biāo)H和V都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點(diǎn),P,Q分別是AD和CD上的點(diǎn),且滿足①$\frac{|AP|}{|AD|}$=$\frac{|DQ|}{|DC|}$,②直線AQ與BP的交點(diǎn)在橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點(diǎn),M為橢圓E第一象限部分上一點(diǎn),作MN垂直于y軸,垂足為N,求梯形ORMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項(xiàng)式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項(xiàng)該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(  )
A.5B.12C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,則符合條件的非空集合A的個(gè)數(shù)是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=sinx-xcosx(x≥0).
(1)求函數(shù)f(x)的圖象在($\frac{π}{2}$,1)處的切線方程;
(2)若a≥$\frac{1}{3}$,則?x∈[0,$\frac{π}{2}$],不等式f(x)≤ax3是否恒成立?并說明你的理由.
(3)若m=${∫}_{0}^{\frac{π}{2}}$f(x)dx,g(x)=$\frac{6m}{(4-π){x}^{2}}$f(x),證明:[1+g($\frac{1}{3}$)][1+g($\frac{1}{{3}^{2}}$)][1+g($\frac{1}{{3}^{3}}$)]…[1+g($\frac{1}{{3}^{n}}$)]<$\sqrt{e}$.

查看答案和解析>>

同步練習(xí)冊答案