5.已知x與y之間的幾組數(shù)據(jù)如表:
x123456
y021334
假設(shè)根據(jù)如表數(shù)據(jù)所得線性回歸直線l的方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則l一定經(jīng)過的點為( 。
A.(1,0)B.(2,2)C.($\frac{7}{2}$,$\frac{13}{6}$)D.(3,1)

分析 求出$\overline{x}$、$\overline{y}$,根據(jù)線性回歸方程一定經(jīng)過樣本中心點,即可得出結(jié)論.

解答 解:由題意可知n=6,$\overline{x}$=$\frac{1}{6}$×(1+2+3+4+5+6)=$\frac{7}{2}$,$\overline{y}$=$\frac{1}{6}$×(0+2+1+3+3+4)=$\frac{13}{6}$,
根據(jù)線性回歸方程一定經(jīng)過樣本中心點,所以l一定經(jīng)過的點為($\frac{7}{2}$,$\frac{13}{6}$).
故選:C.

點評 本題考查線性回歸方程,根據(jù)線性回歸方程一定經(jīng)過樣本中心點是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,⊙O是△ABC的外接圓,AD平分∠BAC交BC于D,交△ABC的外接圓于E.
(1)求證:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)若AB=3,AC=2,BD=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a,
(3)試預測加工20個零件需要多少小時?
用最小二乘法求線性回歸方程系數(shù)公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_4^2-n{{\overline x}^2}}}},\hat a=\overline y-\overline b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知不等式(x-1)m<2x-1對x∈(0,3)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在平面直角坐標系xOy中,將曲線C1:x2+y2=1上的所有點的橫坐標伸長為原來的$\sqrt{3}$倍,縱坐標伸長為原來的2倍后,得到曲線C2;在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程是ρ(2cosθ-sinθ)=6.
(Ⅰ)寫出曲線C2的參數(shù)方程和直線l的直角坐標方程;
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離d最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機抽取80名市民,得到數(shù)據(jù)如下表:
患心肺疾病不患心肺疾病合計
大于40歲16
小于或等于40歲12
合計80
已知在全部的80人中隨機抽取1人,抽到不患心肺疾病的概率為$\frac{2}{5}$
(1)請將2×2列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.025的前提下認為患心肺疾病與年齡有關(guān)?
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2+aln(x+1)
(1)若a=-4,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,正四棱錐S-ABCD的底面邊長為2,E,F(xiàn)分別為SA,SD的中點.
(1)證明:EF∥平面SBC;
(2)若平面BEF⊥平面SAD,求S-ABCD的體積.

查看答案和解析>>

同步練習冊答案