13.已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),則sin(π+α)=-$\frac{4}{5}$.

分析 由條件利用誘導(dǎo)公式進(jìn)行化簡所給的式子,可得結(jié)果.

解答 解:∵sin($\frac{π}{2}$+α)=cosα=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,
則sin(π+α)=-sinα=-$\frac{4}{5}$,
故答案為:-$\frac{4}{5}$.

點評 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{1+i}{2+i}$(其中i為虛數(shù)單位),則復(fù)數(shù)$\overline z$在坐標(biāo)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列不等式一定成立的是(  )
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.x2+1≥2|x|(x∈R)
C.sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在本次模擬考試的數(shù)學(xué)試卷中共有12道選擇題,每道選擇題有4個選項,其中只有一個是正確的,得分標(biāo)準(zhǔn)規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”,某考生每道題都給出一個答案,該考生已確定有9道題的答案是正確的,而其余題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜.
(1)求該考生選擇題得60分的概率;
(2)該考生的數(shù)學(xué)成績在班內(nèi)為中等水平,可用該考生的數(shù)學(xué)選擇題的得分作為班級數(shù)學(xué)選擇題的平
均得分,試求班級數(shù)學(xué)選擇題得分的均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式$\frac{(x-1)(2-x)}{x+1}>0$的解集是( 。
A.(-∞,-1)∪(1,2)B.(-1,1)∪(2,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,⊙O的割線PAB交⊙O于A、B兩點,割線PCD經(jīng)過圓心O,PE是⊙O的切線.已知PA=6,AB=7$\frac{1}{3}$,PO=12,則PE=4$\sqrt{5}$,⊙O的半徑是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{a_n}$,記數(shù)列{an}的前n項之積為Πn,則Π2014的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a、b、c是三條不重合的直線,α、β、γ是三個不重合的平面.
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,α∥c⇒a∥α;
④a∥γ,α∥γ⇒a∥α;
⑤a?α,b?α,a∥b⇒a∥α.
其中正確的命題號是①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示莖葉統(tǒng)計圖表示某城市一臺自動售貨機(jī)的銷售額情況,那么這組數(shù)據(jù)的中位數(shù)是(  )
A.20B.31C.23D.27

查看答案和解析>>

同步練習(xí)冊答案