4.若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x-$\sqrt{3}$cos2x,則下列說法正確的是( 。
A.y=f(x)的周期為$\frac{π}{2}$B.y=f(x)在[0,$\frac{π}{6}$]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱D.y=f(x)是偶函數(shù)

分析 根據(jù)函數(shù)的導(dǎo)數(shù)關(guān)系,求出函數(shù)f(x)的表達式,結(jié)合三角函數(shù)的圖象和性質(zhì)分別進行判斷即可.

解答 解:∵f′(x)=sin2x-$\sqrt{3}$cos2x,
∴f(x)=-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+c,(c是常數(shù))
則f(x)=-cos(2x-$\frac{π}{3}$)+c,
則函數(shù)的周期T=$\frac{2π}{2}=π$,故A錯誤;
當(dāng)0≤x≤$\frac{π}{6}$時,0≤2x≤$\frac{π}{3}$,-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤0,此時y=cos(2x-$\frac{π}{3}$)為增函數(shù),y=-cos(2x-$\frac{π}{3}$)+c為減函數(shù),故B正確;
∵f($\frac{π}{2}$)=-cos(2×$\frac{π}{2}$-$\frac{π}{3}$)+c=-cos$\frac{2π}{3}$+c不是最值,
∴y=f(x)的圖象關(guān)于直線x=$\frac{π}{2}$不對稱,故C錯誤;
∵f(0)=-cos(-$\frac{π}{3}$)+c不是最值,
∴函數(shù)f(x)關(guān)于x=0不對稱,則函數(shù)f(x)不是偶函數(shù),
故D錯誤.
故選:B.

點評 本題主要考查命題的真假判斷,涉及導(dǎo)數(shù)的運算以及三角函數(shù)的圖象和性質(zhì),綜合性較強,但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前項和為Sn,點(n,Sn)在函數(shù)f(x)=${∫}_{1}^{x}$(2t+1)dt的圖象上,則數(shù)列{an}的通項公式為(  )
A.an=2nB.an=n2+n+2
C.an=$\left\{\begin{array}{l}{0,n=1}\\{2n-1,n≥2}\end{array}\right.$D.an=$\left\{\begin{array}{l}{0,n=1}\\{2n,n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知sinα=-$\frac{2}{3}$,且α∈(-$\frac{π}{2}$,0),則tan(2π-α)的值為( 。
A.-$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,若|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義域為D的函數(shù)f(x)同時滿足條件:①常數(shù)a,b滿足a<b,區(qū)間[a,b]⊆D,②使f(x)在[a,b]上的值域為[at,bt](t∈N+),那么我們把f(x)叫做[a,b]上的“t級矩形”函數(shù),函數(shù)f(x)=x3是[a,b]上的“2級矩形”函數(shù),則滿足條件的常數(shù)對(a,b)共有( 。
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式x2-2x+m>0在R上恒成立的必要不充分條件是(  )
A.m>2B.0<m<1C.m>0D.m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若直線a∥平面α,直線b在平面α內(nèi),則直線a與b的位置關(guān)系為( 。
A.一定平行B.一定異面
C.一定相交D.可能平行、可能異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)Z滿足(2+i)•Z=3-i,則|Z|等于( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=x2(x≥1)的反函數(shù)f-1(x)=$\sqrt{x}$(x≥1).

查看答案和解析>>

同步練習(xí)冊答案