分析 (Ⅰ)根據(jù)已知和余弦定理,可得cosB=$\frac{\sqrt{2}}{2}$,進(jìn)而得到答案;
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,結(jié)合正弦型函數(shù)的圖象和性質(zhì),可得$\sqrt{2}$cosA+cosC的最大值.
解答 解:(Ⅰ)∵在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
∴a2+c2-b2=$\sqrt{2}$ac.
∴cosB=$\frac{{a}^{2}{+c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,
∴$\sqrt{2}$cosA+cosC=$\sqrt{2}$cosA+cos($\frac{3π}{4}$-A)
=$\sqrt{2}$cosA-$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=sin(A+$\frac{π}{4}$).
∵A∈(0,$\frac{3π}{4}$),
∴A+$\frac{π}{4}$∈($\frac{π}{4}$,π),
故當(dāng)A+$\frac{π}{4}$=$\frac{π}{2}$時(shí),sin(A+$\frac{π}{4}$)取最大值1,
即$\sqrt{2}$cosA+cosC的最大值為1.
點(diǎn)評 本題考查的知識點(diǎn)是余弦定理,和差角公式,正弦型函數(shù)的圖象和性質(zhì),難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 乙盒中黑球不多于丙盒中黑球 | B. | 乙盒中紅球與丙盒中黑球一樣多 | ||
C. | 乙盒中紅球不多于丙盒中紅球 | D. | 乙盒中黑球與丙盒中紅球一樣多 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com