)如圖所示,在四棱錐PABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足 時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可)
科目:高中數(shù)學 來源: 題型:
已知一幾何體的三視圖如圖所示,正視圖和側(cè)視圖都是矩形,俯視圖為正方形,在該幾何體上任意選擇4個頂點,以這4個點為頂點的幾何體(圖形)可能是( )
①矩形;②有三個面為直角三角形,有一個面為等腰三角形的四面體;③每個面都是直角三角形的四面體.
(A)①②③ (B)②③ (C)①③ (D)①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示 ,在四面體ABCD中,E、G分別為BC、AB的中點,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求證:EF、GH、BD交于一點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,幾何體EABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.
(1)求證:BE=DE;
(2)若∠BCD=120°,M為線段AE的中點,求證:DM∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐ABCD,則在三棱錐ABCD中,下列結(jié)論正確的是( )
(A)平面ABD⊥平面ABC (B)平面ADC⊥平面BDC
(C)平面ABC⊥平面BDC (D)平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在四棱錐PABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點.
(1)證明:BD⊥平面APC;
(2)若G為PC的中點,求DG與平面APC所成的角的正切值;
(3)若G滿足PC⊥平面BGD,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a.點E為側(cè)棱PC的中點,又作DF⊥PB交PB于點F.則PB與平面EFD所成角為( )
(A)30° (B)45° (C)60° (D)90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)a,b,c均為正實數(shù),則三個數(shù)a+,b+,c+( )
A.都大于2
B.都小于2
C.至少有一個不大于2
D.至少有一個不小于2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com