【題目】已知函數(shù)
(1)判斷在上的增減性,并證明你的結(jié)論
(2)解關(guān)于的不等式
(3)若在上恒成立,求的取值范圍
【答案】(1)見解析(2)見解析(3){a | a<0或a≥} .
【解析】分析:(1)根據(jù)定義法來(lái)證明函數(shù)的單調(diào)性;(2)即,分兩種情況a>0和a<0分類討論得到解集即可;(3)在恒成立即,,由均值不等式可求右側(cè)函數(shù)的最值.
詳解:
(1)f(x)在上為減函數(shù)
證明方法一:設(shè)
在上為減函數(shù)
方法二:利用導(dǎo)數(shù)證明:f′(x)= <0
∴f(x)在上為減函數(shù)
(2)不等式即即
當(dāng),不等式的解當(dāng)a<0,
∵x>0 ∴恒成立
不等式的解
綜上所述當(dāng)a>0時(shí) 不等式的解{x|}
當(dāng)a<0時(shí),不等式的解{x|x>0},
(3)若 在恒成立即
所以因?yàn)?/span>的最小值為4
所以即或a≥
所以 a的取值范圍是{a |a<0或a≥} .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)與的面積之和記為.
若,求的值;
若對(duì)任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元,當(dāng)用水超過4噸時(shí),超過部分每噸3.00元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)26.4元,分別求出甲、乙兩戶該月的用水量和水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折過程中( )
A.存在某個(gè)位置,使得直線AC與直線BD垂直
B.存在某個(gè)位置,使得直線AB與直線CD垂直
C.存在某個(gè)位置,使得直線AD與直線BC垂直
D.對(duì)任意位置,三對(duì)直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在甲、乙兩地同時(shí)銷售一種品牌車,利潤(rùn)(單位:萬(wàn)元)分別為L1=-x2+21x和L2=2x,其中銷售量為x(單位:輛).若該公司在兩地共銷售15輛,則能獲得的最大利潤(rùn)為()
A. 90萬(wàn)元B. 120萬(wàn)元
C. 120.25萬(wàn)元D. 60萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當(dāng)0≤x≤1時(shí),
(i)函數(shù)f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對(duì)x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市國(guó)慶節(jié)天假期的樓房認(rèn)購(gòu)量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對(duì)這天的認(rèn)購(gòu)量與成交量作出如下判斷:①日成交量的中位數(shù)是;②日成交量超過日平均成交量的有天;③認(rèn)購(gòu)量與日期正相關(guān);④月日認(rèn)購(gòu)量的增量大于月日成交量的增量.上述判斷中錯(cuò)誤的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com