【題目】某市國慶節(jié)天假期的樓房認購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學根據(jù)折線圖對這天的認購量與成交量作出如下判斷:①日成交量的中位數(shù)是;②日成交量超過日平均成交量的有天;③認購量與日期正相關;④日認購量的增量大于日成交量的增量.上述判斷中錯誤的個數(shù)為( )

A. B. C. D.

【答案】C

【解析】分析:將數(shù)據(jù)按照大小順序排列后,由于一共有7個數(shù)字,所以取第四個數(shù)字為中位數(shù).

日均成交量為成交量的平均數(shù),正相關為統(tǒng)計圖中的點從左下分布至右上.

認購量與成交量的增量均是第七天與第六天數(shù)據(jù)之差.

詳解:將成交量數(shù)據(jù)按大小順序排列,中位數(shù)為26,所以①錯;

平均成交量為,超過44.1的只有一天,所以②錯;

由圖中可以看出,數(shù)據(jù)點并不是從左下分布至右上,所以③錯;

107日認購量增量為,成交量增量為,所以④對.

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷上的增減性,并證明你的結論

(2)解關于的不等式

(3)若上恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明: (n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

其中.

為了預測印刷千冊時每冊的成本費,建立了兩個回歸模型.

(1)根據(jù)散點圖,你認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關于的回歸方程,并預測印刷千冊時每冊的成本費.

附:對于一組數(shù)據(jù),,…,其回歸方程的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則 =( )
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】無窮數(shù)列滿足:為正整數(shù),且對任意正整數(shù),為前、、、中等于的項的個數(shù).

1)若,求的值;

2)已知命題 存在正整數(shù),使得,判斷命題的真假并說明理由;

3)若對任意正整數(shù),都有恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】請你幫忙設計2010年玉樹地震災區(qū)小學的新校舍,如圖,在學校的東北力有一塊地,其中兩面是不能動的圍墻,在邊界內(nèi)是不能動的一些體育設施.現(xiàn)準備在此建一棟教學樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設計,才能使教學樓的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有個大小相同的黑球和白球.已知從袋中任意摸出個球,至少得到個白球的概率是.

(1)求白球的個數(shù);

(2)從袋中任意摸出個球,記得到白球的個數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構對員工進行專業(yè)技術培訓,其中培訓機構費用成本為12000元.公司每位員工的培訓費用按以下方式與該機構結算:若公司參加培訓的員工人數(shù)不超過30人時,每人的培訓費用為850元;若公司參加培訓的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓費減少10元.已知該公司最多有60位員工可參加培訓,設參加培訓的員工人數(shù)為人,每位員工的培訓費為元,培訓機構的利潤為元.

(1)寫出 之間的函數(shù)關系式;

(2)當公司參加培訓的員工為多少人時,培訓機構可獲得最大利潤?并求最大利潤.

查看答案和解析>>

同步練習冊答案