直線(xiàn)l1、l2的斜率是方程x2-3x-1=0的兩根,則l1與l2的位置關(guān)系是(  )
分析:利用根與系數(shù)的關(guān)系、相互垂直的直線(xiàn)斜率之間的關(guān)系即可得出.
解答:解:設(shè)直線(xiàn)l1、l2的斜率分別為k1,k2,
∵直線(xiàn)l1、l2的斜率是方程x2-3x-1=0的兩根,∴k1k2=-1.
∴l(xiāng)1⊥l2
故選:D.
點(diǎn)評(píng):本題考查了根與系數(shù)的關(guān)系、相互垂直的直線(xiàn)斜率之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2
2
,0),其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(1)求橢圓C及其“伴隨圓”的方程;
(2)若過(guò)點(diǎn)P(0,m)(m<0)的直線(xiàn)與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
2
,求m的值;
(3)過(guò)橢圓C的“伴橢圓”上一動(dòng)點(diǎn)Q作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),當(dāng)直線(xiàn)l1,l2都有斜率時(shí),試判斷直線(xiàn)l1,l2的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

p:直線(xiàn)l1,l2的斜率相乘為-1,q:l1⊥l2.則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,正確的是( 。
A、通過(guò)點(diǎn)(0,2)且傾斜角是15°的直線(xiàn)方程是y=(
3
-2)x+2
B、設(shè)直線(xiàn)l1和l2的斜率分別為k1和k2,則l1和l2的夾角是θ=arctg
k2-k1
1+k1k2
C、直線(xiàn)x+
2
y-1=0
的傾斜角是arctg(-
2
2
)
D、已知三點(diǎn)A(a+b,c),B(b+c,a),C(c+a,b),則A,B,C三點(diǎn)共線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓m的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)P(0,m)(m<0)的直線(xiàn)l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
2
,求m的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線(xiàn)l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線(xiàn)l1,l2的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)濟(jì)學(xué)中的“蛛網(wǎng)理論”(如圖),假定某種商品的“需求-價(jià)格”函數(shù)的圖象為直線(xiàn)l1,“供給-價(jià)格”函數(shù)的圖象為直線(xiàn)l2,它們的斜率分別為k1、k2,l1與l2的交點(diǎn)P為“供給-需求”均衡點(diǎn),在供求兩種力量的相互作用下,該商品的價(jià)格和產(chǎn)銷(xiāo)量,沿平行于坐標(biāo)軸的“蛛網(wǎng)”路徑,箭頭所指方向發(fā)展變化,最終能否達(dá)于均衡點(diǎn)P,與直線(xiàn)l1、l2的斜率滿(mǎn)足的條件有關(guān),從下列三個(gè)圖中可知最終能達(dá)于均衡點(diǎn)P的條件為  ( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案