13.若以連續(xù)兩次擲般子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),則點(diǎn)P在圓x2+y2=25.5外的概率是$\frac{7}{12}$.

分析 先計(jì)算出基本事件總數(shù),再計(jì)算出事件“點(diǎn)P在圓x2+y2=25.5外”包含的基本事件數(shù),再由公式求出概率即可.

解答 解:由題意以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo)(m,n),這樣的點(diǎn)共有6×6=36個(gè),
“點(diǎn)P在圓x2+y2=25.5外”包含的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21個(gè)
故點(diǎn)P在圓x2+y2=25外的概率是=$\frac{21}{36}$=$\frac{7}{12}$,
故答案為:$\frac{7}{12}$

點(diǎn)評(píng) 本題考查古典概率模型及其概率計(jì)算公式,解題的關(guān)鍵是計(jì)算出所有的基本事件的個(gè)數(shù)以及所研究的事件所包含的基本事件總數(shù).一般使用列舉法進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,g(x)=f(x)-a
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個(gè)零點(diǎn)分別為x1,x2,x3,x4,求x1+x2+x3+x4的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)若數(shù)列{an}的前n項(xiàng)和為Sn=n2-10n,求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}的前n項(xiàng)和為T(mén)n=2n+1,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=5n2+3n.
(1)求a6+a7+a8
(2)求通項(xiàng)an;
(3)判斷數(shù)列{an}是否是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.寫(xiě)出下面各遞推公式表示的數(shù)列{an}的通項(xiàng)公式.
(1)a1=1,an+1=2n•an(n≥1);
(2)a1=1,an=an-1+$\frac{1}{n(n-1)}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.$\overrightarrow{a}$+$\overrightarrow$=(2,-8),$\overrightarrow{a}$$-\overrightarrow$=(-8,16),$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(5,-12),$\overrightarrow{a}$•$\overrightarrow$=-63,cosθ=-$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,lga-1gb=1gsinB=-lg$\sqrt{2}$,B為銳角,則A的值是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AC=1,BC=$\sqrt{3}$,M是邊BC上靠近C的一個(gè)四等分點(diǎn),若N是BC邊上的動(dòng)點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)直線(xiàn)y=kx與橢圓$\frac{x^2}{2}+{y^2}=1$相交于A(yíng),B兩點(diǎn),分別過(guò)A,B向x軸作垂線(xiàn),若垂足恰為橢圓的兩個(gè)焦點(diǎn),則k=(  )
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\frac{1}{2}$D.$±\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案