思路分析: 按導(dǎo)數(shù)乘積運算法則先求導(dǎo),然后由已知條件構(gòu)造關(guān)于
的方程求解.
+
+
+
故
又
,故
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)已知函數(shù)
.(Ⅰ)當(dāng)
時,求證:函數(shù)
在
上單調(diào)遞增;(Ⅱ)若函數(shù)
有三個零點,求
的值;
(Ⅲ)若存在
,使得
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知
設(shè)
的反函數(shù)為
。
(I)求
的單調(diào)區(qū)間;(II)若對任意
,不等式
恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列圖象中,可以作為
y=-
x4+
ax3+
bx2+
cx+
d的圖象的是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,
,設(shè)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)
圖像上任意一點
為切點的切線的斜率
恒成立,求實數(shù)
的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是二次函數(shù),不等式
的解集是
且
在區(qū)間
上的最大值是12。
(I)求
的解析式;
(II)是否存在實數(shù)
使得方程
在區(qū)間
內(nèi)有且只有兩個不等的實數(shù)根?若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知:三次函數(shù)
,在
上單調(diào)增,在(-1,2)上單調(diào)減,當(dāng)且僅當(dāng)
時,
(1)求函數(shù)
f (
x)的解析式; (2)若函數(shù)
,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的圖像在
處的切線在
x軸上的截距為_________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
的導(dǎo)數(shù)是( )
查看答案和解析>>