10.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,A,B是C左支上兩點(diǎn)且$\overrightarrow{A{F_1}}=3\overrightarrow{{F_1}B}$,∠ABF2=90°,則雙曲線C的離心率為$\frac{\sqrt{10}}{2}$.

分析 設(shè)$|{\overrightarrow{{F_1}B}}|=x$,則$|{\overrightarrow{A{F_1}}}|=3x$,在Rt△ABF2中,由勾股定理解得x=a,在Rt△F1BF2中,x2+(2a+x)2=(2c)2,將x=a即可求出離心率.

解答 解:設(shè)$|{\overrightarrow{{F_1}B}}|=x$,則$|{\overrightarrow{A{F_1}}}|=3x$,在Rt△ABF2中,|AB|=4x,|BF2|=2a+x,|AF2|=2a+3x,
由勾股定理得(4x)2+(2a+x)2=(2a+3x)2,解得x=a,
在Rt△F1BF2中,x2+(2a+x)2=(2c)2,將x=a代入得10a2=4c2,
即$e=\frac{{\sqrt{10}}}{2}$.
故答案為:$\frac{\sqrt{10}}{2}$.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.甲、乙、丙三位同學(xué)將獨(dú)立參加英語(yǔ)聽(tīng)力測(cè)試,根據(jù)平時(shí)訓(xùn)練的經(jīng)驗(yàn),甲、乙、丙三人能達(dá)標(biāo)的概率分
別為P、$\frac{2}{3}$、$\frac{3}{5}$,若將三人中有人達(dá)標(biāo)但沒(méi)有全部達(dá)標(biāo)的概率為$\frac{2}{3}$,則P等于( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的離心率為e,拋物線y2=2px(p>0)的焦點(diǎn)為(e,0),則p的值為(  )
A.$\frac{1}{16}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}{f}^{'}$(e)x+xlnx(其中,e為自然對(duì)數(shù)的底數(shù),x>0).
(Ⅰ)求f′(e);
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)是否存在整數(shù)k,使得對(duì)任意的x>0,f(x)>k(x-1)恒成立(*)若存在,寫(xiě)出一個(gè)整數(shù)k,并證明(*);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當(dāng)x∈[1,+∞)時(shí),求函數(shù)y=g(x)+f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=3sinx+4cosx取得最小值,則sinθ=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知log183=a,log518=b,用a,b表示log3690=$\frac{1+b}{2b-2ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面AB1C1,AA1=1,底面△ABC是邊長(zhǎng)為2的正三角形,則三棱錐A-A1B1C1的體積為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)-cos2x.
(1)求f(x)的最小正周期及x∈[$\frac{π}{12}$,$\frac{2π}{3}$]時(shí)f(x)的值域;
(2)在△ABC中,角A、B、C所對(duì)的邊為a、b、c,其中角C滿足f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,若S△ABC=$\sqrt{3}$,c=2,求a,b(a>b)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案