Processing math: 11%
15.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)證明:平面PAD⊥平面PCD;
(2)若F為PC上一點(diǎn),滿足BF⊥AC,求二面角F-AB-P的余弦值.

分析 (1)推導(dǎo)出PA⊥CD,AD⊥DC,從而CD⊥平面PAD,由此能證明平面PAD⊥平面PCD.
(2)以A為原點(diǎn)AB,AD,AP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角F-AB-P的余弦值.

解答 (本小題12分)
證明:(1)∵PA⊥底面ABCD,CD?底面ABCD,
∴PA⊥CD,
∵AD⊥AB,AB∥DC,∴AD⊥DC,
∵PA∩AD=A,∴CD⊥平面PAD,
∵CD?平面PCD,∴平面PAD⊥平面PCD.…(4分)
解:(2)由已知以A為原點(diǎn)AB,AD,AP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
得P(0,0,4),B(2,0,0),C(4,4,0)…(6分)
∵F為PC上一點(diǎn),∴設(shè)PFPC,∵BF⊥AC,
BFAC=(PFPB)•AC=λ\overrightarrow{PC}•\overrightarrow{AC}-\overrightarrow{PB}•\overrightarrow{AC}=0,①
\overrightarrow{PC}=(4,4,4),\overrightarrow{AC}=(4,4,0),\overrightarrow{PB}=(2,0,-4),
代入(1)得λ=\frac{1}{4}.…(8分)
\overrightarrow{PF}=\frac{1}{4}\overrightarrow{PC}=(1,1,-1),\overrightarrow{AF}=\overrightarrow{AP}+\overrightarrow{PF}=(1,1,3),\overrightarrow{AB}=(2,0,0),
設(shè)平面ABF的法向量\overrightarrow{n}=(x,y,z),
\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AF}=x+y-3z=0}\\{\overrightarrow{n}•\overrightarrow{AB}=2x=0}\end{array}\right.,取z=1,得\overrightarrow{n}=(0,-3,1),
平面ABP的法向量\overrightarrow{m}=(0,1,0),
∴cos<\overrightarrow{m},\overrightarrow{n}>=\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}=-\frac{3}{10}\sqrt{10}
∴二面角F-AB-P的余弦值為-\frac{3}{10}\sqrt{10}.…(12分)

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知log5[log3(log2x)]=0,那么x{\;}^{-\frac{1}{3}}=( �。�
A.\frac{\sqrt{2}}{4}B.\frac{\sqrt{3}}{6}C.\frac{1}{2}D.\frac{\sqrt{3}}{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(\frac{1}{4},4),則f(2)=( �。�
A.\frac{1}{2}B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示,則該幾何體最長(zhǎng)的側(cè)棱長(zhǎng)為(  )
A.2B.\sqrt{5}C.1D.\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若橢圓\frac{{x}^{2}}{k+4}+\frac{{y}^{2}}{12}=1的離心率為\frac{1}{2},則實(shí)數(shù)k的值為5或12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線x-y+1=0的斜率是( �。�
A.1B.-1C.\frac{π}{4}D.\frac{3π}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.實(shí)數(shù)x,y滿足\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.,若μ=2x-y的最小值為-4,則實(shí)數(shù)a等于( �。�
A.-4B.-3C.-2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,\overrightarrow{AB}\overrightarrow{BC}>0,則該三角形的形狀是( �。�
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知集合A={x||x|≤2},B={x|3x-2≥1},則A∩B={x|1≤x≤2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘