5.已知集合A={x||x|≤2},B={x|3x-2≥1},則A∩B={x|1≤x≤2}.

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式解得:-2≤x≤2,即A={x|-2≤x≤2},
由B中不等式解得:x≥1,即B={x|x≥1},
則A∩B={x|1≤x≤2},
故答案為:{x|1≤x≤2}

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)證明:平面PAD⊥平面PCD;
(2)若F為PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和為Sn,若${S_n}={n^2}$,數(shù)列$\left\{{\frac{2}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Tn=(  )
A.$\frac{n}{2n+1}$B.$\frac{2n+2}{2n+1}$C.$\frac{2n}{2n+1}$D.$\frac{2n}{2n-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線$l:x=\frac{a^2}{c}$是橢圓$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右準線,若橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,右準線方程為x=2.
(1)求橢圓Γ的方程;
(2)已知一直線AB過右焦點F(c,0),交橢圓Γ于A,B兩點,P為橢圓Γ的左頂點,PA,PB與右準線交于點M(xM,yM),N(xN,yN),問yM•yN是否為定值,若是,求出該定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,邊a,b,c分別為內(nèi)角A,B,C的對邊,且滿足cos(A-B)=2sinAsinB.
(1)判斷△ABC的形狀;
(2)若a=3,c=6,CD為角C的角平分線,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.古代數(shù)學著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上述的已知條件,可求得該女子前3天所織布的總尺數(shù)為$\frac{35}{31}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)集合A={x∈Z|x2≤4},B={x|x>-1},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$cosC=\frac{1}{8},C=2A$.
(1)求cosA的值;
(2)若a=4,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖是高中課程結(jié)構(gòu)圖:生物所屬課程是( 。
A.技術(shù)B.人文與社會C.藝術(shù)D.科學

查看答案和解析>>

同步練習冊答案