【題目】解答下列各題:

(1)已知扇形的周長為10cm,面積為4cm2,求扇形圓心角的弧度數(shù).

(2)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.

(3)已知一扇形的周長為40cm,求它的半徑和圓心角取什么值時,才能使扇形的面積最大?最大面積是多少?

【答案】1(2) 80π(3) 2, 最大值為100cm2

【解析】

(1)設扇形圓心角的弧度數(shù)為θ(0<θ<

2π),弧長為l,半徑為r,

依題意有

代入r25r40,解之得r11r24.

r1時,l8(cm),此時,θ8rad>2πrad舍去.

r4時,l2(cm),此時,θrad.

(2)設扇形弧長為l,∵72°72×(rad),

lαR×208π(cm)

SlR×8π×2080π(cm2)

(3)設扇形的圓心角為θ,半徑為r,弧長為l,面積為S,則l2r40,

l402r,Slr×(402r)r(20r)r=-(r10)2100.

當半徑r10cm時,扇形的面積最大.

這個最大值為100cm2,這時θ2rad.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某學校的特長班有50名學生,其中有體育生20名,藝術(shù)生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因為學習專業(yè)的原因,體育生常年進行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進行系統(tǒng)的身體鍛煉,若前兩組的學生中體育生有8名.

(1)根據(jù)頻率分布直方圖及題設數(shù)據(jù)完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計

體育生

20

藝術(shù)生

30

合計50

(2)根據(jù)(1)中表格數(shù)據(jù)計算可知,________(填“有”或“沒有”)99.5%的把握認為“心率小于60次/分與常年進行系統(tǒng)的身體鍛煉有關(guān)”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市A,B兩所中學的學生組隊參加辯論賽,A中學推薦3名男生,2名女生,B中學推薦了3名男生,4名女生,兩校推薦的學生一起參加集訓,由于集訓后隊員的水平相當,從參加集訓的男生中隨機抽取3人,女生中隨機抽取3人組成代表隊

1求A中學至少有1名學生入選代表隊的概率.

2某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,設X表示參賽的男生人數(shù),求X得分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從集市上買回來的蔬菜仍存有殘留農(nóng)藥,食用時需要清洗數(shù)次,統(tǒng)計表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).

(1)在如圖的坐標系中,描出散點圖,并根據(jù)散點圖判斷,哪一個適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說明理由)

(2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;

表中,.

(3)對所求的回歸方程進行殘差分析.

附:①線性回歸方程中系數(shù)計算公式分別為;

,說明模擬效果非常好;

,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.不過原點的直線與橢圓相交于兩點,設直線,直線,直線的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=asinωx+bcosωxω0)的定義域為R,最小正周期為π,且對任意實數(shù)x,恒有成立.

1)求實數(shù)ab的值;

2)作出函數(shù)fx)在區(qū)間(0,π)上的大致圖象;

3)若兩相異實數(shù)x1、x2∈(0,π),且滿足fx1)=fx2),求fx1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四個命題:

①如果向量共線,則

的充分不必要條件;

③命題,的否定是,;

④“指數(shù)函數(shù)是增函數(shù),而是指數(shù)函數(shù),所以是增函數(shù)”此三段論大前提錯誤,但推理形式是正確的.

以上命題正確的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山,為了保護環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到年生產(chǎn)銷售的統(tǒng)計規(guī)律如下:①年固定生產(chǎn)成本為2萬元;②每生產(chǎn)該型號空氣凈化器1百臺,成本增加1萬元;③年生產(chǎn)x百臺的銷售收入(萬元).假定生產(chǎn)的該型號空氣凈化器都能賣出(利潤=銷售收入﹣生產(chǎn)成本).

1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應控制在什么范圍內(nèi)?

2)該產(chǎn)品生產(chǎn)多少臺時,可使年利潤最大?

查看答案和解析>>

同步練習冊答案