分析 (1)通過向量模的計(jì)算易得數(shù)列{|$\overrightarrow{{a}_{n}}$|}是等比數(shù)列;
(2)通過向量數(shù)量積的運(yùn)算,可得cosθn=$\frac{\sqrt{2}}{2}$,即得bn=$\frac{nπ}{2}-1$,Sn=$\frac{π}{4}({n}^{2}+n)-n$;
(3)易知cn=$\frac{2-n}{2}•$${2}^{\frac{2-n}{2}}$,假設(shè)數(shù)列{cn}中的第n項(xiàng)最小,可知0≤c2<c1,當(dāng)n≥3時(shí),通過計(jì)算可得c5<c6<c7<…,再由cn≥cn+1知c5<c4<…<c1,故得結(jié)論.
解答 (1)證明:根據(jù)題意,得$|\overrightarrow{{a}_{n}}|$=$\frac{1}{2}\sqrt{({x}_{n-1}-{y}_{n-1})^{2}+({x}_{n-1}+{y}_{n-1})^{2}}$
=$\frac{\sqrt{2}}{2}\sqrt{{{x}_{n-1}}^{2}+{{y}_{n-1}}^{2}}$
=$\frac{\sqrt{2}}{2}$$|\overrightarrow{{a}_{n-1}}|$,
∴數(shù)列{|$\overrightarrow{{a}_{n}}$|}是等比數(shù)列;
(2)解:∵cosθn=$\frac{\overrightarrow{{a}_{n-1}}•\overrightarrow{{a}_{n}}}{|\overrightarrow{{a}_{n-1}}||\overrightarrow{{a}_{n}}|}$
=$\frac{({x}_{n-1},{y}_{n-1})•\frac{1}{2}({x}_{n-1}-{y}_{n-1},{x}_{n-1}+{y}_{n-1})}{\frac{\sqrt{2}}{2}|\overrightarrow{{a}_{n-1}}{|}^{2}}$
=$\frac{\frac{1}{2}({{x}_{n-1}}^{2}+{{y}_{n-1}}^{2})}{\frac{\sqrt{2}}{2}({{x}_{n-1}}^{2}+{{y}_{n-1}}^{2})}$
=$\frac{\sqrt{2}}{2}$,
∴θn=$\frac{π}{4}$,∴bn=$\frac{nπ}{2}-1$,
∴Sn=$(\frac{1}{2}π-1)+(\frac{2}{2}π-1)+$$…+(\frac{n}{2}π-1)$=$\frac{π}{4}({n}^{2}+n)-n$;
(3)結(jié)論:數(shù)列{cn}中存在最小項(xiàng),最小項(xiàng)為c5=$-\frac{3}{2}•{2}^{-\frac{3}{2}}$.
理由如下:
∵$|\overrightarrow{{a}_{n}}|$=$\sqrt{2}(\frac{\sqrt{2}}{2})^{n-1}$=${2}^{\frac{2-n}{2}}$,∴cn=$\frac{2-n}{2}•$${2}^{\frac{2-n}{2}}$,
假設(shè)數(shù)列{cn}中的第n項(xiàng)最小,由c1=$\frac{\sqrt{2}}{2}$、c2=0,可知0≤c2<c1,
當(dāng)n≥3時(shí),有cn<0,由cn≤cn+1,可得
$\frac{2-n}{2}•$${2}^{\frac{2-n}{2}}$≤$\frac{2-(n+1)}{2}•{2}^{\frac{2-(n+1)}{2}}$,即$\frac{2-n}{1-n}≥{2}^{-\frac{1}{2}}$,
∴$(\frac{2-n}{1-n})^{2}≥\frac{1}{2}$,∴n2-6n+7≥0,
解得$n≥3+\sqrt{2}$或$n≤3-\sqrt{2}$(舍),
∴n=5,即有c5<c6<c7<…,
由cn≥cn+1,得3≤n≤5,
又0≤c2<c1,∴c5<c4<…<c1,
故數(shù)列{cn}中存在最小項(xiàng),最小項(xiàng)為c5=$-\frac{3}{2}•{2}^{-\frac{3}{2}}$.
點(diǎn)評(píng) 本題考查數(shù)列和向量的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
支持 | 不支持 | 合計(jì) | |
中型企業(yè) | 80 | 40 | 120 |
小型企業(yè) | 240 | 200 | 440 |
合計(jì) | 320 | 240 | 560 |
P(K2≥k0) | 0.050 | 0.025 | 0.010 |
K0 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{{\sqrt{3}}}{3}]$ | B. | $(0,\frac{{\sqrt{2}}}{2}]$ | C. | $[\frac{1}{3},\frac{{\sqrt{2}}}{2}]$ | D. | $[\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
非重度污染 | 重度污染 | 合計(jì) | |
供暖季 | |||
非供暖季 | |||
合計(jì) | 100 |
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com