20.為了研究某種細(xì)菌在特定條件下隨時(shí)間變化的繁殖情況,得到如表所示實(shí)驗(yàn)數(shù)據(jù),若t與y線性相關(guān).
天數(shù)t(天)  4 5
繁殖個(gè)數(shù)y(千個(gè))  6 8 912 
(1)求y關(guān)于t的回歸直線方程;
(2)預(yù)測(cè)t=8時(shí)細(xì)菌繁殖的個(gè)數(shù).
(參考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$,$\widehat{y}=\widehatx+\widehat{a}$)

分析 (1)求出回歸系數(shù),即可求y關(guān)于t的回歸直線方程;
(2)當(dāng)t=8時(shí),求出y,即可預(yù)測(cè)t=8時(shí)細(xì)菌繁殖的個(gè)數(shù).

解答 解:(1)由已知$\overline{t}$=5,$\overline{y}$=8,則5$\overline{t}$•$\overline{y}$=200,5$\overline{t}$2=125,
$\widehat$=$\frac{217-200}{135-125}$=1.7所以$\widehat{a}$=-0.5,
所以y關(guān)于t的回歸直線方程y=1.7t-0.5;
(2)當(dāng)t=8時(shí),y=1.7×8-0.5=13.1(千個(gè)).

點(diǎn)評(píng) 本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x+$\frac{1}{2}$)為奇函數(shù),g(x)=f(x)+1,若an=g($\frac{n}{2017}$),則數(shù)列{an}的前2016項(xiàng)和為(  )
A.2017B.2016C.2015D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.同時(shí)拋擲甲、乙兩顆骰子.
(1)求事件A“甲的點(diǎn)數(shù)大于乙的點(diǎn)數(shù)”的概率;
(2)若以拋擲甲、乙兩顆骰子點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),求事件B“P落在圓x2+y2=25內(nèi)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,傾斜角為α的直線l過(guò)點(diǎn)M(-2,-4),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ.
(1)寫(xiě)出直線l的參數(shù)方程(α為常數(shù))和曲線C的直角坐標(biāo)方程;
(2)若直線l與C交于A、B兩點(diǎn),且|MA|•|MB|=40,求傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)是定義域R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,若實(shí)數(shù)a滿足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2},2$]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)α,β是兩個(gè)不同的平面,m,n,l 是三條不同的直線,下列命題中正確的是(  )
A.若α∩β=l,m?α,n?β,則m,n一定相交B.若α∥β,m?α,n?β,則m,n一定平行
C.若α∥β,m∥α,n∥β,則m,n一定平行D.若α⊥β,m⊥α,n⊥β,則m,n一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2$\sqrt{2}+\frac{2π}{3}$B.4$+\frac{2π}{3}$C.2$\sqrt{2}+\frac{π}{3}$D.4$+\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若向量$\overrightarrow{a}$、$\overrightarrow$的夾角為150°,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=4,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某三棱錐的三視圖如圖所示,則該三棱錐的最長(zhǎng)棱的棱長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案