如圖,四棱錐的底面是直角梯形,,,是兩個邊長為的正三角形,,的中點,的中點.

(Ⅰ)求證:平面
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
(Ⅰ)詳見解析;(Ⅱ) 詳見解析;(Ⅲ) 直線與平面所成角的正弦值為.

試題分析:(I)利用兩平面垂直的性質(zhì)定理,證明BC平面AEC,再根據(jù)線面垂直的性質(zhì)定理證明AEBC,根據(jù)勾股定理證明AEEC,利用線面垂直的判定定理證明AE平面BCEF;(II)三棱錐體積利用體積轉(zhuǎn)換為以E為頂點,為底面的椎體體積求得.等體積轉(zhuǎn)化,是立體幾何經(jīng)常運用的一種方法,高考也考過.
試題解析:(Ⅰ)證明:設的中點,連接,則,∵,,∴四邊形為正方形,∵的中點,∴的交點,∵,
,∴,在三角形中,,∴,∵,∴平面;

(Ⅱ)方法1:連接,∵的中點,中點,∴,∵平面平面,∴平面.方法2:由(Ⅰ)知平面,又,所以過分別做的平行線,以它們做軸,以軸建立如圖所示的空間直角坐標系,由已知得:,,,則,,,.∴平面,平面,∴平面;                              

(Ⅲ) 設平面的法向量為,直線與平面所成角,則,即,解得,令,則平面的一個法向量為,又
,∴直線與平面所成角的正弦值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,,的中點.

(Ⅰ)求證://平面
(Ⅱ)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點,

(1)證明:;
(2)證明:;
(3)求四棱錐與圓柱的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點的中點.
(1) 證明:平面平面;
(2) 求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

( 12分)如圖,在四棱錐中,側面是正三角形,底面是邊長為2的正方形,側面平面的中點.

①求證:平面;
②求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知正方體,是底對角線的交點.
求證:(1)
(2 )
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

a和b是兩條異面直線,下列結論正確的個數(shù)是(  )
(1) 過不在a、b上的任一點,可作一個平面與a、b都平行.
(2) 過不在a、b上的任一點,可作一條直線與a、b都相交.
(3) 過a可以并且只可以作一個平面與b平行.
(4) 過不在a、b上的任一點,可作一條直線與a、b都垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面外有兩條直線,如果在平面內(nèi)的射影分別是,給出下列四個命題:① ② ③相交相交或重合 ④平行平行或重合,其中不正確的命題的個數(shù)是(     )
A.4個B.3個C.2個D. 1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于空間的兩條直線和一個平面,下列命題中的真命題是( )
A.若,則B.若 ,則
C.若,,則D.若, ,則

查看答案和解析>>

同步練習冊答案